

Abstract

Technology is now part of our daily lives. However, unlike other STEM courses,
programming courses are not yet part of the early school curriculum. Early learning
can benefit later skills, and learning to program is not excluded. However, while
programming tools for children are available, courses that focus on learning and ex-
ploring unplugged and block-based programming and debugging are not yet widely
available. This thesis addresses this gap with a programming course for children fo-
cusing on programming and debugging with ScratchJr and inspired by it, unplugged.
The study investigated what knowledge is transferred between the two types of pro-
gramming and how behavior in the two types of programming compares. Debugging
is also analyzed in terms of how children react to errors, what debugging strategies
they develop, and how their age plays a role in debugging.
Through qualitative research it was found that unplugged programming and debug-
ging were suitable for the course, but the method used to teach ScratchJr needed
more polishing. Furthermore, the knowledge transfer was successful and the children
were eager to explore programming and debugging on their own. In addition, four
debugging strategies were identified.

Keywords: Children’s Programming, Children’s Debugging, ScratchJr,
Unplugged Programming

2

Contents

Contents . 3

List of Figures . 6

List of Tables . 7

List of Abbreviations . 8

1. Introduction . 9

2. Theoretical Background . 11
2.1. Programming . 11

2.1.1. Unplugged Programming . 12
2.1.2. Block-based Programming . 14

2.2. Debugging . 15

3. Related Work . 19
3.1. Research Questions . 21

4. Experimental Planning . 22
4.1. Pre-Course Procedure . 22

4.1.1. Pilot Studies . 22
4.1.2. Participants . 22
4.1.3. Experimental Design . 23

4.2. Programming Course and Material 23
4.2.1. Overview . 23
4.2.2. Material . 23
4.2.3. Procedure . 30

4.3. Transcription and Analysis Procedure 32

5. Results and Discussion . 34
5.1. Answer to How do children react to programming errors, and are

there di↵erences between their own and implemented errors? 34
5.1.1. Aha! Moment . 35
5.1.2. Describe Behavior . 35
5.1.3. Questioning . 36
5.1.4. Logical Reasoning . 37

3

CONTENTS

5.1.5. Reaction to Given Bugged Program 38
5.1.6. Problems Due to the Tablet 39
5.1.7. Conclusion to How do children react to programming errors,

and are there di↵erences between their own and implemented
errors? . 40

5.2. Answer to How does programming and debugging compare in un-
plugged and block-based programming? 41
5.2.1. Pair Programming . 41
5.2.2. Thinking Aloud . 43
5.2.3. Testing . 45
5.2.4. Debugging . 46
5.2.5. Mental Simulation and Embodiment 49
5.2.6. Backseat-Programming . 50
5.2.7. Distraction by the Tablet . 50
5.2.8. Other Interesting Things . 52
5.2.9. Conclusion to How does programming and debugging compare

in unplugged and block-based programming? 54
5.3. Answer to Is there a transfer of knowledge from unplugged to block-

based programming? . 56
5.3.1. Conclusion to Is there a transfer of knowledge from unplugged

to block-based programming? 58
5.4. Answer to What debugging strategies do children use when none have

been taught? . 58
5.4.1. Unplugged Programming . 58
5.4.2. ScratchJr Programming . 59
5.4.3. Conclusion to What debugging strategies do children use when

none have been taught? . 60
5.5. Answer to Are there di↵erences in debugging between di↵erent age

groups? . 60
5.5.1. Conclusion to Are there di↵erences in debugging between dif-

ferent age groups? . 62
5.6. Further Exploration . 62
5.7. Limitations . 65
5.8. Lessons learned . 66

6. Conclusion and Future Work . 68

7. Acknowledgments . 69

Bibliography . 70

A. File Share Code . 78

B. ScratchJr Programmed Stories . 79

4

CONTENTS

C. Feedback Sheet . 81

D. Percentage Calculation . 82

E. Original Quotes . 83

D. Declaration of Authorship . 98

5

List of Figures

2.1. Examples of di↵erent types of unplugged programming 13
2.2. Scratch and ScratchJr side-by-side comparison 15
2.3. Introductory block-based and text-based programming program on the

Blockly website [29] . 16
2.4. Error locating technique model by Katz and Anderson [38] derived

from Morris and Rouse [54] . 17

4.1. Example of ScratchJr commands [22] 23
4.2. All cardboard command cards sorted by category: a) program start,

b) control and state commands, c) action commands, d) motion com-
mands, e) sound commands, f) program end 25

4.3. A step-by-step guide card and an identical task card with a program
that has intentional errors in it . 26

4.4. Four examples of activity card tasks 27
4.5. Left: ScratchJr introduction, Right: Example of a ScratchJr Story

Guide . 28
4.6. Three roles as cards with their tasks: robot, compiler, programmer . . 29
4.7. Outside programming environment for unit 1 30
4.8. Inside programming environment for unit 2 31

6

List of Tables

4.1. Overview of the units . 24

5.1. Quotes from types of Pair Programming Behavior 42
5.2. Overview comparing programming and debugging between unplugged

and ScratchJr programming . 55

7

List of Abbreviations

CS Computer Science

CT Computational Thinking

STEM Science, Technology,
Engineering and Mathematics

UI User Interface

8

1. Introduction

In today’s environment, programmed technology has become an essential part of
our daily lives. If one just thinks about it now, a few things certainly come to mind,
such as a ticket vending machine, a navigation system, or games and applications
on the phone.
It is impossible to ignore the impact of Computer Science (CS) and Computational

Thinking (CT) flowing into day-to-day life [76, 65]. This knowledge is no longer
limited to professional programmers, as it has become more widespread in other
fields. As a result, it is important to recognize the importance of CS and CT in our
lives and strive to make it more common knowledge [81].
This led to the rise of the need for more qualified people with knowledge about

programming concepts and CT, and encouraged some CS-unrelated degrees to incor-
porate beginner programming courses to teach a better understanding. Though with
programming knowledge, experience is much more important and that takes time.
Long before that, students have the opportunity to participate in school program-
ming courses. In Germany, however, these are integrated into the school curriculum
only in higher grades [73]. Unlike mathematics, as another Science, Technology,
Engineering and Mathematics (STEM), which is already introduced in elementary
school to build a knowledge base to be refined over the years in school.
The introduction of beginner STEM courses in elementary schools brings benefits

for children and there is no argument against it [20]. Children can already experience
more advanced topics such as technology, physics, history, etc. through interactive
exhibits in museums or workshops. The same can be done with programming.
Being exposed to programming projects at a young age could lead to interest and
positive attitude towards CS fields later in life [84]. Furthermore, the acquisition
of a programming language can be similar to learning a new language [12, 13] and
the elementary school age could be advantageous for it [69]. Some other benefits
that children could benefit from early learning programming include problem-solving
skills, planning skills, communication skills, and learning to work together [76, 61,
7, 14, 25, 27, 17, 18].
The classic programming languages are text-based. Due to children’s develop-

ment and the fact that they are still learning, reading and writing programs can be
dicult. However, over the years, some age-appropriate programming methods have
emerged: block-based programming languages and unplugged programming, which
are discussed in chapter 2. This makes it possible for children as young as four to
experience and apply programming [61].
While programming can be done in di↵erent ways, one of the most important

skills during programming remains the same: debugging. Although debugging is

9

1. Introduction

often associated only with CS, it can be argued that the problem-solving aspect of
it is beneficial in other fields [41]. Even the most knowledgeable expert programmers
still make errors [64] and need to debug them. For novices it is more challenging
because they are still learning programming and have limited experience. However,
learning to program, will not provide a good approach how to debug [68]. Debugging
is something to encounter and learn by yourself.
The objective of this thesis is to investigate what strategies elementary school

children use when identifying an error in their code in di↵erent programming en-
vironments. Furthermore, their strategies when debugging their programmed code
and if these strategies change between programming settings. In addition, I investi-
gate whether there are di↵erences between grade levels in detection and debugging
strategies.

10

2. Theoretical Background

The purpose of this chapter is to explain relevant theories and key words that are
critical to understanding the following thesis.

2.1. Programming

In modern years, technologies have become more available for younger children who
are not even able to read [15], however, programming for children is not a recent
development. The first programming language for children was LOGO, which was
invented in 1966 and is still used by researchers [70]. The LOGO language di↵ers
notably from “classical programming languages” with its natural English verbs and
nouns, and then a few years after its invention, the well-known turtle was developed
as a digital robot controlled by simple directional words [70]. With the rise of
personal computers, LOGO designers developed a visual programming language for
younger children to discover programming without the need to read or write [70].
With newer technologies and research, other barriers to programming for children
have been identified: keyboard and mouse handling [31] and lack of immediate visual
feedback [25, 27, 45]. The development, ideas and design of LOGO programming
for children started the area, and now most block-based programming for children is
based on it [70].
For this reason they share similarities [31, 25, 85]. Instead of text-based languages

on a computer, children’s programming tools, software and toys use minimal or
no text. Depending on the target age, programming for younger children is done
with less fine-motor skill-based functionalities, such as programming on touch-based
screens, drag-and-drop with elements snapping together, and physical elements.
The goals of programming are also di↵erent. In “classical programming”, the pro-

grammer solves an abstract problem by thinking about how to achieve the goal by
connecting programming concepts in a logical way. For children, abstract thinking
is dicult [83] and, as mentioned earlier, immediate feedback from their program is
important for them to understand and connect actions to commands [61]. Conse-
quently, the start and end goal of the programming (task) is easily understandable
and comprehensible for children [31, 14]. For this reason, the tasks are often to
control a character or figure from a starting point to the end. The steps are made
visible. The figure that does this can be di↵erent: a digital character, in physical
programming a normal figure that is placed by hand, a robot that is programmed
directly or someone who acts according to the program.
There are many ways for children to experience programming, but two main cate-

11

2. Theoretical Background

gories, or a combination of them, are most commonly used: unplugged (or physical)
programming and block-based (or graphical) programming.

2.1.1. Unplugged Programming

Unplugged or physical programming describes the absence of a computer during
the programming process. The programming concepts are decoupled from writing
code and instead broken down into the idea and understanding behind it [10, 61].
Unplugged programming has two di↵erent forms: building a program or an activity
to understand CS concepts through a game. To shortly discuss unplugged activities:
The games are designed to let people passively engage with the concepts. The
learning happens by following the rules of the game with an explanation afterwards.
The advantage is that the concepts are less abstract through the activity [71].
However, the other variant of unplugged programming, and most relevant here,

is programming and executing it without the need of an electronic device. Pro-
gramming elements such as commands are translated into the real world objects to
interact with [52]. There are di↵erent ways to make this possible: buttons [31, 49] (cf.
Figure 2.1(b)), card-like objects to connect through proximity [25, 85, 48] (cf. Fig-
ure 2.1(c)), interlocking with one another [14] (cf. Figure 2.1(d)), or on a board [61]
(cf. Figure 2.1(a)). These objects can be various materials such as paper, wood,
blocks, etc., as long as they can form a program [52]. The physical program is then
executed by a person or an inanimate object. This makes a di↵erence with the level
of embodiment which will be defined later in 2.1.1. This means that the person will
execute every command by themself or with a figure. Thus, the interaction does not
end with pressing a button to make the program run, but by taking on the role of
executing the program, the person gets a di↵erent perspective on the program.
In research unplugged programming is used when programming with young chil-

dren as the programming is more understandable for them as it is concrete [9].

Hybrid

As an extension to unplugged programming, these blocks can be translated into
a computer program, i.e. hybrid programming [71, 40, 39, 14, 36, 37]. In this
way, the programming part remains concrete, but is translated into visual feedback,
e.g. by the robot following the program, or by being displayed as a block-based
program. The way the program is transferred can be di↵erent, directly like the
buttons on the Beebot [75], through commands that are able to connect and transmit
the program to the robot [63, 37] or by having the computer program identify the
physical program through a picture [42].

Embodiment

Cognitive science’s theory of embodiment describes how physical interaction with
the environment is important for cognition. [5]. By doing something active with

12

2. Theoretical Background

(a) Cubetto programming board
and robot [63]

(b) BeeBot robot with pro-
gramming buttons [75]

(c) unplugged paper com-
mands [85]

(d) KIBO robot and com-
mands [42]

(e) Tern programming language
program [37]

(f) Ozobot robot on program-
ming lines [57]

Figure 2.1.: Examples of di↵erent types of unplugged programming

the body, thinking becomes conscious and understanding deepens [5]. Even more
complex thinking, such as problem-solving, can be aided by physical interaction in
the real world. According to Clark [19], the body can be the connection for the
mind to shape the environment around us and thus “simplify and transform inter-
nal problem-solving”. Embodiment, however, does not end with the mere use of the
body. As Clark [19] notes, technology or other tools can be used and interacted with
“to extend and augment cognition” [43]. Similarly, according to Papert [59], tech-
nology, or more specifically, computers, can be a powerful tool to enhance thinking
and thus enhance learning.
As it stands, embodiment can come in di↵erent types: acting by themselves or

through something. Both can be categorized, as Sung et al. [74] report, as full or
the latter, low embodiment. According to Sung et al. [74] full embodiment in the
context of problem-solving refers to a person who uses and moves the whole body.
As for low embodiment, the person uses only the hands or a “surrogate” such as a
figure.
These theories of embodiment are not only for the fully developed cognition,

but universal even for children. The theories of constructivism by Piaget [62] and
derived from it, constructionism by Papert [58] are both focused on the learning
of children and share beliefs with the theories of embodiment. For Piaget, an adult
or a child does not just change their mind and thinking, but would only change

13

2. Theoretical Background

it if they experienced or acted with their environment [1]. Teaching something
without letting children experience it will not make much di↵erence, instead they
will construct what they will learn based on what they already know and what
they experience by interacting with their environment [1]. In Papert’s theory of
constructionism he emphasizes that children need to do something actively to gain
knowledge and that this knowledge can also be formed depending on the context [1].

2.1.2. Block-based Programming

Graphical programming or also block-based programming has its origin in LOGO [70]
and as a result, implementations of block-based programming share similarities in
the way they work, their characteristics and the idea behind what they teach [53].
It is very di↵erent from the “classic programming” experience. Building a program

is done quite literally, by selecting the right block from a palette [78] or visible
selection. Through dragging and dropping the blocks into the editor where the
program is built, blocks snap horizontally or vertically to each other. This makes
the block-based programming languages simple, as syntax errors are prevented by
default [53, 78]. The combinations of blocks work with visual cues [78], through the
shape of the blocks makes it clear where they can be attached. A good example of
this gives one of the most popular block-based programming language: Scratch [11],
see Figure 2.2(a). The color indicates the type of block, and the shapes of the blocks
and slots indicate their connection. Similar to physical programming 2.1.1, block-
based programming blocks are designed with minimal to no text, depending on the
target age.
Directly related to the well-known Scratch [11], is ScratchJr [22]. It was designed

by Flannery et al. [27] with the goal of having a programming learning tool for
children who are not yet confident with basic reading, writing and arithmetic. The
target age group is from five years old to the second year of school [22]. The blocks
are without text and also the interface is designed with self-explanatory symbols.
The programming goals of both Scratch and ScratchJr are undefined. Instead of
controlling a figure in a 2D maze or field with a fixed starting point and goal, both
give the freedom to program digital characters, objects, and any inserted thing in a
scene. To make it easier to use, the programming options are reduced in ScratchJr.
The main focus is on animating own stories with given or drawn characters in one
to four 2D scenes. In these cases, the child programmer or adult mentor will need
to plan the story and animation themselves or look up the example tasks, as there
are no predefined tasks within ScratchJr.
With this simplicity of block-based programming in early childhood, however, the

question arises as to how well what has been learned can be transferred to “classical
programming”.

14

2. Theoretical Background

(a) Screenshot of the Scratch interface [51] (b) Screenshot of the ScratchJr interface [22]

Figure 2.2.: Scratch and ScratchJr side-by-side comparison

Hurdles of Block-Based Programming

While block-based programming is a good way for young children to interact with
the world of programming, there is often discussion that the transition becomes
more dicult for them. Although programs such as ScratchJr and Scratch make
the introduction to programming easy, they can lead to poor programming practices
and diculties when starting text-based programming [53, 78]. In the work of Moors
et al. [53] they argue that the simplicity of block-based programming, which makes
it so good as an introduction for beginners, can cause problems down the line. The
main argument is the lack of syntax when programming with blocks. With blocks
that only snap to the right blocks and commands that are easy to remember because
of the colors and shapes, students can be overwhelmed with new information when
learning the importance of syntax when programming with text-based languages. As
a result, students may lose confidence in their own ability to program [53].
However, using block-based programming as a good starter tool to learn about

programming concepts [8] and as a stepping stone to motivate children and generate
interest to move on to other programming projects can have a di↵erent e↵ect [53, 84].
To overcome this diculty, some block-based languages can switch between block

and text editors. By switching, the block or text commands are translated into the
other programming type (see Figure 2.3). An example of a programming language
with this capability is Blockly [29].

2.2. Debugging

Programming something that will work correctly the first time is rare. When writing
program code, most programmers, from novice to expert, spend a good deal of their
time debugging [35, 47]. Debugging is the process of noticing that the program is not

15

2. Theoretical Background

Figure 2.3.: Introductory block-based and text-based programming program on the
Blockly website [29]

working as intended, searching for the source of the faulty behavior, and finding an
appropriate repair [6]. This “problem-solving activity” [34, 32, 7] is not only specific
to programming, but is useful in many STEM fields and in general [41, 14]. When
debugging, the programmer spends more time identifying the error than figuring
out how to fix it [38]. This is true for both novices and experts, but experts are
slightly faster at this process [32]. However, debugging is not a skill that is simply
acquired through programming, but must be actively learned and practiced [38].
Conversely, being good at debugging also benefits and leads to better program-
ming [2], as learning from errors can benefit the learning process [3, 14]. During
debugging the programmer needs to have programming knowledge to understand
the program [2, 58] but also problem-solving skills [44].
Debugging has many connections to problem-solving [34, 32, 7], so Katz and

Anderson [38] took the troubleshooting characterization of Morris and Rouse [54]
and applied the model to their debugging techniques (see Figure 2.4). According
to these techniques, the programmer must first understand the program. This is
automatically granted by writing the program themself, but if the program comes
from another source, they have to become familiar with it. Then it is tested. If the
program produces incorrect output during testing, the error must be located and
fixed.
Klahr and Carver [44] analyzed the debugging process, specifically how to locate

the error, and identified 5 phases into which debugging can be divided: program
evaluation, bug identification, program representation, bug location, and bug correc-
tion. The first phase is to realize that the program does not work as intended by
testing it. The next phase describes getting a general idea of the error by observing
the behavior of the program in order to narrow down possible errors. In the follow-
ing phase, the programmer builds a representation of the program, if not written by
the programmer themself. When working on an own program this is easier, because

16

2. Theoretical Background

Figure 2.4.: Error locating technique model by Katz and Anderson [38] derived from
Morris and Rouse [54]

this phase happens during the programming itself [38]. However, when debugging
an unfamiliar program, this knowledge must be acquired. Throughout the previous
phases, the programmer has collected clues about the error in the program to narrow
down the possible locations. If the clues are not sucient to localize the error, the
programmer must resort to inspecting the program step-by-step for the error. The
final phase of debugging is simply to fix the error. Four of these phases have to do
with actually finding the error in the program.

Debugging Strategies The model of debugging stages is kept simple to demon-
strate the process behind it, but there are many di↵erent strategies that program-
mers utilize during debugging. According to Klahr and Carver [44], good debugging
skills cannot simply be learned by programming, but must be taught.
As mentioned before, debugging mostly consists of searching for the error in the

program. There are a number of strategies that have emerged for finding the error.
However, it is important to note that these strategies are di↵erent from tool-assisted
debugging strategies. They focus on finding the error without the help of the inte-
grated help in the programming environment.
Katz and Anderson [38] discovered three debugging strategies in their study of

students: simple mapping, hand simulation, and causal reasoning. Using simple
mapping, the programmer starts by looking at the faulty behavior of the program
and follows the clues to the location of the error. In professional programming,

17

2. Theoretical Background

this strategy is also called backwards reasoning [79]. By using hand-simulation, the
programmer executes the program like a computer, looking for the point at which
the program’s behavior deviates from the expected behavior. When using casual
reasoning, the programmer tests parts of the program more thoroughly, gathering
clues and information about the program along the way to narrow down the location
of the error.
In their research with children, Klahr and Carver [44] identified and taught de-

bugging strategies: brute force, serial search, and focused search. However, they also
found that some children tend to stick with the bugged program instead of fixing
it. During the brute force strategy, the programmer does not collect clues to narrow
down and locate the error, but checks everything for correctness in no particular
order until it is fixed. In the serial search strategy, the programmer starts at the be-
ginning of the program and checks it for correctness until the error location is found.
In the focused search strategy, the programmer limits the search to some places in
the program. The clues collected beforehand decide where and which locations are
searched.

18

3. Related Work

One of the earliest studies of children’s debugging is Klahr and Carver [44], in
which they defined the debugging process in phases (see section 5.2.4). In order to
determine the thinking and thus the debugging, the children were asked to think
aloud, i.e. to voice their thoughts. In addition, they prepared predesigned programs
with built-in errors to ensure that children were involved in the debugging process.
In their study, they taught children a debugging strategy of focused search with a
specific question to lead to the error in the program. Previously, children used brute
force and switched to the taught strategy along with debugging before the actual
debugging process, i.e., before testing and realizing an error.
Many modern studies of programming and debugging with children refer to the

study of Klahr and Carver [44] and still use their debugging phases.
Programming and debugging studies with children always depend on age, devel-

opment and education. However, especially with younger children up to elementary
school age, the preferred methods are those described in section 2.1, such as block-
based programming with a character or simulated robot [21, 56], a robot in combina-
tion with unplugged programming [68, 50], or both one after the other [4]. Because
the children often have no previous experience with programming, most start with
teaching the basics and programming or debugging strategies [4, 21, 56, 68].

Debugging Strategies Through their studies, the researchers found various de-
bugging strategies that children used without being taught or trying to brute force
to debug the error. With the exception of a few, children use brute force or trail
and error in the beginning before moving on to a more e↵ective strategy [56]. A
common strategy is delete and rewrite [4, 50, 56], in which the children discard their
faulty programs and start over. Other often used strategies are replace error and
compensate error strategy [4, 56]. During the replace error -strategy, the children
searched for the error and replaced the faulty commands with working ones. On
the other hand, in the compensate the error strategy, the children did not replace
the faulty commands with new ones, but added commands to the program until it
worked as intended. Another debugging strategy is verbal debugging, in which chil-
dren express errors in the program and what needs to be changed before physically
doing it, or then leave it unchanged and start a new task [50].
Some of the strategies found are more specific to a programming method. By

using the provided debugging tools [68] or build-in debugging tools [21] the children
used them in their debugging strategy. In Sipitakiat and Nusen’s study [68], they
prepared debugging tools for unplugged robot programming: flags to mark errors

19

3. Related Work

in the program and a protractor to help children understand the angles at which
the robot must turn. Misirli and Komis [50] had two options for children to pro-
gram: buttons on the robot or what they called pseudocode (unplugged programming
cards). Some children chose to debug the robot by laying out the pseudocode and
debugging it before repeating the actions on the robot. DeLiema et al. [21] focused
their study on children’s self-reflection after programming sessions and found and
categorized several factors that helped children debug: self- and emotional reflec-
tion, social support, changing perspective and using prior knowledge, coding tools,
and testing.
Some of the children’s observed strategies begin before debugging during program-

ming, which helps them avoid errors. Similar to verbal debugging during the verbal
programming strategy, children plan their program before implementing it [50]. The
factor of constructing the program disappears and the children can concentrate on
planning alone. Another error-preventing programming strategy observed is step-
by-step programming [50, 68]. Used in maze tasks, children plan the next step ahead
before adding the right command(s) to the program.
The studies showed that not only the actual programming process and debugging

strategies are important to focus on, but also the planning and (error) reflection
phases are crucial [21]. By pointing with their finger, the children showed planning
behavior on their own initiative [56]. At the same time, when working in groups,
children used this advantage to plan programming and debugging with group mem-
bers or teachers [21].
Error prevention strategies such as step-by-step programming helped children syn-

chronize their thinking with the robot’s movements, which helped them detect errors
during program execution [68]. While using this strategy, children barley need to
start the debugging process [56]. Similarly, Ahn [4] found by comparing unplugged
programming and debugging with a control group. The unplugged (embodiment)
groups performed better at debugging, linking it to synchronized thinking with
body movements.
Larger programs are more challenging for children [68, 56]. Only then children

started to use debugging tools more often [68]. When errors in programs increase,
children had problems to distinguish single errors and consequential errors [56, 68].
In case of multiple errors, children used the bottom-up approach to solve the errors
in the program [56].
Nikolos et al. [56] observed that the first process of debugging, locating the error

or realizing that the program is not working as intended, is often brief, and is only
noticeable when children use verbal expressions such as “uh-oh”.
DeLiema et al. [21] observed in their study that children use more than one strat-

egy to debug. Similarly, Nikolos et al. [56] argue that children would come up with
more strategies if they had to focus only on debugging and not on programming
beforehand. They suggest giving children ready-made programs with errors.

20

3. Related Work

3.1. Research Questions

The current state of research on children’s debugging addresses error detection and
debugging strategies in a particular type of programming: unplugged or block-based,
and focuses on debugging in that particular mode. Klahr and Carver [44] have
looked at the transfer of debugging strategies when used as problem-solving in a
programming unrelated task. However, this concept is not represented in more
recent research or with a di↵erent programming type.
Often, children are introduced to debugging strategies before they can develop

their own, so that they do not start with a blank slate when they first begin debug-
ging. Because children have no prior programming experience, researchers observe
children debugging their own errors rather than giving them complete programs
with errors to debug, as Nikolos et al. [56] suggested.
As a result, I identified the following research questions, which are the focus of

this master thesis:

• How do children react to programming errors, and are there di↵erences be-
tween their own and implemented errors?

• How does programming and debugging compare in unplugged and block-based
programming?

• Is there a transfer of knowledge from unplugged to block-based programming?

• What debugging strategies do children use when none have been taught?

• Are there di↵erences in debugging between di↵erent age groups?

21

4. Experimental Planning

In this chapter, the experimental design and the materials for the programming
course that were created for the purpose of answering the research questions will be
explained and summarized.

4.1. Pre-Course Procedure

4.1.1. Pilot Studies

Prior to the study, a small pilot study was conducted in two sessions. In the first
session, the audio devices, programming in general, the cardboard commands, the
outside programming environment, and an earlier version of the tasks were tested
with four volunteer children. Based on observation and feedback, changes were made
such as the new and final step-by-step tasks, the changed programming perspective,
and as a new addition, the role cards. For the second session, three children volun-
teered to test an earlier version of the programming course with the modifications
from the first session. As a final adjustment, the roles became more defined and
tasks were assigned to them.

4.1.2. Participants

The participants of the study are children who chose to participate in a children’s
programming course at the after-school day care center Großstädteln in Markklee-
berg. In three consecutive time slots, six children from first to fourth grade can
be enrolled at a time. The first time slot is for first and second grade, the sec-
ond for third and fourth grade, and the third for all school grades. One child who
participated in the pilot study attended the course in all time slots.
Parents and children were informed in advance about the programming course

through a notice in the after-school day care center. The notice informed that it is
a study. Children who enrolled were given a data protection information, partici-
pant information and information about the audio recording, and for everything, a
consent form for their parents and guardians. The children were provided with par-
ticipant information in an appropriate language that they could understand. The
participating children received no compensation other than attending the program-
ming course.
The study and the documents for the consent were reviewed and approved by the

Ethics Committee.

22

4. Experimental Planning

4.1.3. Experimental Design

The study was decided to be a qualitative research with audio data that will be
transcribed afterwards. The data collection includes semi-structured interviews con-
ducted during the course to gain insight into the children’s thinking and problem-
solving process during programming and debugging. At the end of the programming
course, a feedback sheet in the form of a questionnaire is given to the children to fill
out. At all times during the course, observations are documented by the supervisors.

4.2. Programming Course and Material

The study is conducted over several dates and uses di↵erent materials for the lessons
(from here on units). The programming and these materials have been previously
tested in a pilot study (4.1.1). Due to the large amount of material used in the
study, all of these can be found in a linked repository rather than in the Appendix1.

4.2.1. Overview

The following Table 4.1 summarizes all of the units, their objective, and the material
used. It also links to the corresponding section.

4.2.2. Material

Cardboard Command Cards

Command cards are used in more than one unit and come in two versions, a large and
a table size version. The shape, color and symbol design is based on ScratchJr’s [22]
digital commands, see Figure 4.1. Although only some of the commands have been
preselected with a fixed amount based on fictional programs. The reason for the
strong similarity is that the transition to ScratchJr is planned in later units.

Figure 4.1.: Example of ScratchJr commands [22]

All cards have the same puzzle piece shape except for the start, end, and repeat
commands, see Figure 4.2. This puzzle shape is intended to make it easier to build

1All of the materials can be found at https://drive.google.com/drive/folders/

1z0DEMKZ504A5U0sTe9AF2yIYrYRrIpiL?usp=drive_link, see. Appendix A for QR code

23

4. Experimental Planning

Table 4.1.: Overview of the units

Unit Unit Objective
Programming
environment

Material

Unit 1 (4.2.3)
Introduction to
rules and
commands

Outside, chalked
playing field on the
ground with
programming area
next to it (4.7)

Step-by-step guide
cards (4.2.2),
Cardboard Command
Cards (4.2.2),
Unplugged Role
Cards (4.2.2)

Unit 2 (4.2.3)

Learn the
missing new
commands and
debug a
program with
implemented
errors

Inside with two
groups, at a table
with a small playing
field on a blackboard
and a programming
area next to it (4.8)

Table Command
Cards, remaining
Step-by-step guide
cards (4.2.2), Bonus
Tasks i.e. program
with implemented
errors (4.8),
Playmobil figure,
chalk

Unit 3 (4.2.3)
Introduction to
ScratchJr UI
and commands

In two groups with
one tablet each with
ScratchJr

ScratchJr
introduction,
ScratchJr story
guides (4.2.2)

Unit 4 (4.2.3)

Apply
knowledge from
previous units
and program a
ScratchJr story

In two groups with
each one tablet with
ScratchJr

Empty story sheet
and an example
(4.2.2)

the program with the commands, because visually the commands only interlock in a
certain way. Start and end commands have only one connector for the same reason.
The repeat command consists of two parts that are larger than normal commands
to fit them inside.
There are six colors to symbolize a category of commands: yellow (program start),

red (program end), blue (motion commands), green (sound commands), purple (ac-
tion commands), and orange (control and state commands).
The symbols on the commands di↵er slightly from ScratchJr because they had to

be handmade and therefore simpler. The main di↵erence is the lack of input boxes
on almost all commands, but especially on movement commands. All movements
are meant to be just a single move. The repeat commands have a field for a number
of repeats.

24

4. Experimental Planning

Some commands have been modified to be more suitable for a real live environ-
ment. The ScratchJr action commands hide and show are replaced with disguise
and remove disguise. The sound commands are also replaced with predefined sounds:
clap and stomp.
All cardboard command cards are made of colored 220 g/qm cardboard and the

symbols are made of self-adhesive vinyl paper. The finished assembled commands
are laminated to protect them from the outside environment and to make them easy
to clean.

a) b) c)

d) e) f)

Figure 4.2.: All cardboard command cards sorted by category: a) program start, b)
control and state commands, c) action commands, d) motion commands,
e) sound commands, f) program end

Robot Adventure Cards

The unplugged tasks are designed as an adventure of a robot that wants to reach
its goal with the commands given by the task. There are two versions of those
task cards. The larger one for the first unit is a step-by-step guide and meant as
a progressive introduction to programming and new commands. The activity cards
are the second version and are for the second unit. They assume that all commands
are known, they are di↵erent tasks and they are playing card size. In both variants,

25

4. Experimental Planning

there are tasks that involve finding and debugging errors in a intentionally bugged
program.

Step-by-step Guide The step-by-step guide1 contain tasks to build a program
using specific commands, and new commands are introduced step-by-step, see Fig-
ure 4.3. The cards are numbered up to 17 because they build on each other. For
the study, only a few crucial cards are selected due to time constraints. Each card,
see Figure 4.3, has a title (1), a written task (2), an overview of the playing field
(3), and the commands given for this task (4). The first eight titles and written
tasks are simple descriptions of the program and its intent. The others have a story
theme based on the story “Alice in Wonderland” to make some of the challenges in
the tasks easier to explain. The overview of the playing field is a representation of
the layout of the real playing field. The start, end, obstacles and other objects are
marked in it, but not a predetermined path.

1

2

3

4

5

Figure 4.3.: A step-by-step guide card and an identical task card with a program
that has intentional errors in it

Bonus Cards In between the step-by-step guide are ready-made bugged programs
called bonus cards1, see Figure 4.3. The task is to look for errors in the given
program. These programs consist only of commands from the previous step-by-step
guide and contain two to five errors. These tasks are designed to force error detection
and debugging.

26

4. Experimental Planning

Activity Cards The activity cards1 are designed as playing cards that can be turned
over to reveal the programming task, much like a card game, see Figure 4.4. The task
on them are di↵erent and it can be one of the following ones: Build a program!, Build
a playing field!, Where is a command missing?, Debug the program!, and Where is
the goal sign?. The tasks Build a program! are similar to the tasks on the step-by-
step guide, and Where is a command missing? are programs with intentional errors
to debug. The di↵erence on the activity cards is that the title is missing, the written
tasks have no story theme, and all commands are allowed. It is assumed that all
important commands in the second unit are known from the step-by-step guide or
could be easily explained during the unit.

Figure 4.4.: Four examples of activity card tasks

ScratchJr Programming Tasks

In the ScratchJr units, the tasks change and become more independent. They focus
more on seeing how children transfer the knowledge from the previous units and
provide a guide to follow along.

ScratchJr Introduction This introduction contains four ready-made programs to
be analyzed before programming in ScratchJr, see Figure 4.5. Two of them contain
two ScratchJr characters to demonstrate the interaction of characters. This is a
method that can provide an insight into the transfer of knowledge.

ScratchJr Story Guides The ScratchJr story guides1 provide a starting point
for children to slowly get to know ScratchJr and its UI and functionalities, see

27

4. Experimental Planning

Figure 4.5. The guides are a mix of story and tasks to build the story step-by-step
with multiple characters.

Figure 4.5.: Left: ScratchJr introduction, Right: Example of a ScratchJr Story
Guide

ScratchJr Programmed Stories In the fourth unit, children in their group write
their own story and then exchange it so that the other group has to program it. To
guide them, they are first given an example and then a similar-looking template to
fill in with their own story, see Appendix B. The example is prepared on the tablets.

Role Cards

As an addition based on the pilot study 4.1.1, children can have one of three roles
per program: a robot, a compiler, and three programmers, see Figure 4.6. Both robot
and compiler build the playing field as specified on the task card. During program
execution, the robot listens to the commands read by the compiler and follows them
around the playing field. The programmers build the program and watch for errors
as the program is executed.

Programming Environment

The first unit takes place outside, see Figure 4.7. A large six-by-six grid is drawn on
the ground with chalk, and the programming area is defined next to it. Each grid is

28

4. Experimental Planning

Figure 4.6.: Three roles as cards with their tasks: robot, compiler, programmer

large enough for a child to stand in. Obstacles and other objects are represented by
real-world objects available on site or brought in by one of the study supervisors. If
no suitable object is available, the obstacle or object is drawn with a pen on paper
and placed on the field.
The second unit is done indoors at tables. The six by six playing field is drawn

with chalk on a 50 by 35 centimeter blackboard placed on the table, see Figure 4.8.
Obstacles and objects are also drawn on the board or on paper and then placed on
the board. The programming area is next to the blackboard on the table.
For the unit 3 and 4 participants are given tablets. The tablets run ScratchJr,

where all the programming takes place.

Other Material Used

To represent the start and end points on the board, there are yellow and red card-
board circles, which are also laminated. For outdoor use, the circles are the same
size as the cardboard commands, and for indoor use, they are smaller to fit on the
board.
The second unit is a miniature of the first, and to represent the robot there are

Playmobil figures.
The third and fourth units are on an iPad and an Amazon Fire tablet running

the latest version of ScratchJr (1.3.0).
After the programming course it is planned to get feedback from the children, see

Appendix C. The questions are about what they think about each unit, the perceived
diculty of the course and the duration of the units. Open-ended questions ask the
children to state what they liked best, what they liked least, if they would participate
again, and if there is anything else they would like to say about the programming
course.

29

4. Experimental Planning

Figure 4.7.: Outside programming environment for unit 1

Experimental Equipment

The data collection is done by recording the audio through two recording devices,
Zoom H1n and Zoom H2n.
In the units with the tablets, the screens are recorded. The iPad has a built-in

screen recorder, and the Amazon Fire tablet screen is recorded using XRecorder, an
application available from the Google Store.

4.2.3. Procedure

The units are planned in two parts, one unplugged with the cardboard material and
the other block-based with ScratchJr on tablets. Six children participate in each unit
for 45 minutes. There is a 15 minute preparation time between each group. Since
the time is more limited than originally planned, supervisors review the unit after
each one and modify the next one accordingly.

Unit 1

Before the unit starts, the audio recorders are placed, one in the programming area
and the other behind the playing field.
The first unit serves as an introduction to the rules and commands, so it has

many explanations. Programming is introduced as a game with rules and playing
cards. After the first explanations, the children draw role cards. Then a step-by-step

30

4. Experimental Planning

Figure 4.8.: Inside programming environment for unit 2

guide card is drawn. The task is discussed and new commands or components on
the playing field are explained. Each child has a role and does the task until the
playing field and the program are finished. Then the compiler positions themself
behind the program and the robot on the playing field so that they cannot see the
program. The program is then executed. If an error is found, the programmers fix
it and the compiler and robot start over. Otherwise, if the program was correct and
its execution is finished, the playing field and the programming area are cleared for
the next task.
After the first playthrough, the explanations are reduced, but the procedure re-

mains the same. New cards are drawn until the end of the unit. If there is time left,
the children can come up with their own program and build it until the end of the
45 minutes.
The time of the unit was much more limited than expected, so not all crucial

step-by-step guide cards were completed.

Unit 2

The second unit takes place inside with the programming environment on two tables
for two non-competing groups, with the downsized commands and the same tasks
on each table. One supervisor sits at each of these tables with the children, and
there is an audio device recording. Everything, the programming, the tasks, the
commands, the rules and the roles is the same but smaller to fit on the table.
As recap a short review of the last unit is done with both groups. As the step-by-

31

4. Experimental Planning

step guide cards could not be completed in the first unit, those were used as tasks
instead of the playing card-like activity cards. The first task acts as an introduction.
Then one program with implemented errors is presented. The remaining time the
rest of the step-by-step guide cards are completed until the unit is over.

Unit 3

The children are again split into two non-competing groups at two tables, each with
one tablet with the screen recording and an audio recording device. Before working
in their groups, the children are asked if they have used a tablet before and then
the unit procedure and ScratchJr are explained. It is assumed that ScratchJr is
new to most or all of the children and is introduced as a tool for programming a
story. During the programming, a supervisor sits with them but only o↵ers help
when directly asked, as the children are encouraged to explore more independently.
At first, the ScratchJr introduction is given, in which the children analyze and

describe the ScratchJr program in the task before programming it. At the end of
the introduction, the children are asked if they would like to explore ScratchJr by
programming their own story or using the story guides provided. In both cases this
is done until the end of the unit.

Unit 4

The setup and group work is similar to unit 3. Before working in their groups,
the unit is explained as an applied use of the things they worked on in the last
unit. Then the children read the ScratchJr Story Example and watch the prepared
animation on the tablet. The groups then have 15 minutes to plan and write the
story. During this time, the supervisors only help with writing and explaining.
Then the stories are exchanged and the children program the stories independently.
Meanwhile, the supervisors do not sit with the groups, but come in case there are
questions, explanations and help needed.
The children have until five minutes before the end of the unit and then present

their programmed story to the other group. After that, the participants are given a
feedback sheet to review the programming course.

4.3. Transcription and Analysis Procedure

After the study was completed, the audio of each unit and group was transcribed
using a manual transcription tool oTranscribe [28] that can be used o✏ine. After
transcription, the names of the participants were replaced with a non-identifying
code names in the style of P for participant with an appended number in the order
of the participant list.
For this thesis, the children’s quotes are translated from German into English.

The original quotes are included in the Appendix E, and all transcripts can be

32

4. Experimental Planning

found in a linked repository2.
As it was stated in Heikkilä and Mannila’s research [34], the transcribing process

itself contributes to the analysis and for this reason notes, observations and initial
assumptions were made during transcription. Afterwards, the transcripts were ana-
lyzed through closed card sorting based on the previous notes and new observations
while looking at the transcripts a second time.
Due to ambient noise and incorrect settings on an audio recording device, the

audio quality of the programming group was lost during unit 1 of all groups. Unfor-
tunately, the screen recordings made on the tablets themselves were unworkable, as
the videos stuttered and froze on one frame on several di↵erent tried media players.

2All of the transcripts can be found at https://drive.google.com/drive/folders/

1z0DEMKZ504A5U0sTe9AF2yIYrYRrIpiL?usp=drive_link, see. Appendix A for QR code

33

5. Results and Discussion

To gain insight into children’s thinking and behavior during programming and de-
bugging, a children’s programming course was prepared to answer the research ques-
tions posed.

5.1. Answer to How do children react to
programming errors, and are there di↵erences
between their own and implemented errors?

For this question, observations were made on how children react and behave when
confronted with errors. In unplugged programming, errors in the program would
prevent the robot from reaching the goal and in ScratchJr the characters would
behave unexpectedly. In the second unit, contact with programming errors is ensured
by a given bugged program. In the third and fourth unit, the children programmed
more independently and errors were expected.
Overall, reactions from children to errors were positive. In no instance they were

discouraged when encountering something unexpected. Moreover, there are times
when children have been happy to report errors:

“Error, error, error, error!” (P4, unit 2)

“(inhale audibly) We made a mistake! We made a mistake! This should not be here!
It has to be here!” (P4, unit 2)

“Immediately a mistake discovered.” (P4, unit 2)

“I think I already see a mistake in it.” (P6, unit 2)

“The crab stayed in place, haha.” (P12, unit 3)

During the unit the children stayed in their groups and only in the next unit new
groups were formed. Due to that it can be assumed that the reactions are natural
and not originating from only some children. Analysis of the transcripts revealed
common responses and behaviors. These can be categorized into: Aha! Moment,
Describe Behavior, Questioning and Logical Reasoning. Due to the frequency of
incidents with the tablet in unit 3 and unit 4, Problems Due to the Tablet is also
analyzed, even if it is not technically a programming error. Findings are presented
below.

34

5. Results and Discussion

5.1.1. Aha! Moment

This reaction occurred when the children both found an error and immediately found
a solution. This reaction is typically audible in expressions such as: “ah”, “oh” and
“right”:

“Right! We need another forwards here.” (P1, unit 2)

“Ah, there’s one missing.” (P8, unit 2)

“Oh, we just forgot one forward.” (P13, unit 2)

“Oh my... make it big only(?) twice. Hn.” (P2, unit 3)

“There? Oh... target flag.” (P11, unit 3)

“Huh? He jumps in the air and comes always.... ah, he should take o↵ from the
ground and then jumps onto the bed.” (P18, unit 3)

“Nah, that’s saying. Ah yes, yes (inaudible).” (P11, unit 3)

“Yes. No wait, that’s right, you’re right. We need seven.” (P16, unit 3)

“Oorh how, ah right!” (P4, unit 4)

“Why does it do that? Oh, the baby is doing it.” (P4, unit 4)

“Wait no, we can delete this one, wait, I have to put it on well mhm. Mhm. Mhmmm.
Mm-hmm. Oh. Wait.” (P16, unit 4)

“Ah, there’s nowhere more to go. After that...” (P13, unit 4)

“Ah, that’s right, they don’t actually disappear.” (P16, unit 4)

In problem-solving situations the Aha! Moment happens spontaneously, without
any solving process beforehand [46]. Recognizing and understanding the issue and
gaining insight into the problem comes without the use of a strategy [46]. In addition,
by identifying and fixing the error at once the debugging phases [44] are skipped.
This reaction was more frequent in unit 2 than the ScratchJr units. One explanation
could be that the programming was easier for children to understand, that they
skipped from the bug identification phase directly to the bug correction phase [44].

5.1.2. Describe Behavior

A reaction to errors that mainly occurs during programming with ScratchJr is to
describe the behavior of the program:

“Here, go, three times forward, the ball is taken along somehow. And that is somehow
so funny.” (P3, unit 3)

“Ey, he hasn’t even jumped yet!” (P1, unit 3)

“Huh? It’s not coming out of his hand right now.” (P7, unit 3)

“The crab stayed in place. HaHa.” (P12, unit 3)

“He’s not getting any smaller, is he?” (P8, unit 3)

“And where is the ball? It’s not going to be magically removed.” (P3, unit 4)

“Huh? And the fairy is still here.” (P1, unit 4)

35

5. Results and Discussion

“Yes, but it’s just stupid, because the wizard, he’s... Now it’s gone... Well, it doesn’t
work somehow.” (P13, unit 4)

“The lizard is also doing something, but somehow it doesn’t appear here.” (P13, unit
4)

“But there the crown moves by itself.” (P12, unit 4)

“But... Yes, but they’re not supposed to be here. They are supposed to be gone.”
(P16, unit 4)

In the debugging strategy simple mapping [38] or backwards reasoning [79] the
programmer analyses the behavior of the program to find clues to debug it. This
could be something that children do to help them understand what is happening
and to solve the error. Otherwise it might be a form of verbal debugging [50] in
which children describe what is happening before solving it. However, as will be
discussed later, it was more common for errors to be kept in.
As an other explanation, it could be just a symptom of thinking aloud, that

children freely did when occurring an error.

5.1.3. Questioning

As a result of working together on a program in a group, the children made their
questions audible when errors occurred. Often someone would speak up when some-
one else did something they felt was wrong, or did not understand why something
was being done.

“There’s an error, stop! Stop, stop. Why go up twice?” (P2, unit 2)

“Eh, wait a second... Forward. Left?” (P2, unit 2)

“Look, ...(inaudible) jump over then, one, two, then you turn to there?! (emphasis
on ‘there’)” (P17, unit 2)

“Eh, shouldn’t we do five times here?” (P2, unit 2)

“Eh, he’s already big, isn’t he?” (P1, unit 2)

“One f- another one to- yes, to one, eh? Huh?” (P2, unit 2)

“That is also wrong, isn’t it?” (P8, unit 2)

“He’s not getting any smaller, is he?” (P8, unit 3)

“Does that thing still have to go in there? Oh, it doesn’t.” (P7, unit 3)

“Huh? It’s not coming out of your hand right now.” (P7, unit 3)

“Why is he jumping now- huh? Why is he jumping?” (P15, unit 3)

“Where is this bracket? Where is it?” (P8, unit 3)

“Eh, how come Putin1 hasn’t done anything now?” (P18, unit 4)

1This is a character in the story of the other group.

36

5. Results and Discussion

By working together, the children used the opportunity to discuss within the
group. The advantage of this is that together they help themselves to understand
the program better. In the debugging process this is the understand phase [38] or
program representation [44] to get a deeper insight into the program.
In summary, while the children were working on their program they frequently

were audible when something unexpected happened, be it from the task, a group
member or the execution of the program. Working in a group came as a plus because
the children were attentive about things others do. They also often questioned things
they did not understand.

5.1.4. Logical Reasoning

In unit 2, on many occasions, in finding the error, the children used their experience
of the real world environment and implied it into the program:

“From there on. But then he crashes into the wall.” (P2, unit 2)

“Yes, because otherwise we’ll crash into the wall here.” (P1, unit 2)

“When he gets big, he’ll crash into the tunnel.” (P6, unit 2)

“But- but if he makes himself big here again, then he crashes into th’ tunnel wall.”
(P1, unit 2)

“That’s r- that’s really possible! (in the door frame of the room, showing something)
But it is possible, you can stand in the door.” (P3, unit 2)

“Noooo! Otherwise he’ll crash into the obstacle. Then he has to jump over the
obstacle.” (P15, unit 2)

“Well, so that he can go over- through the door. Nnnnn hahaha. Because the door is
not standing.” (P5, unit 2)

The playing field on the table got fantasized into a 3D world by all of the children
and rules of physics like the walls, obstacles and doors became real for the robot
and at the same time for them. It could be that the previous unit 1 helped with
practice to know that the robot can not just simply fly or jump over objects. This is
consistent with the report of Silvis et al. [67] that children are facing the problem to
solve not only “the semantic problem (the program) but also the pragmatic problem
(the environment)”.
What also helped children while finding the error is simulating the way the robot

would take often without placing the figurine:

“And, but the third one is not right again. Because if he’s standing here, then, if he’s
standing here.... One, two, three is right. But here he has to jump over the field,
otherwise he’ll crash into the obstacle.” (P15, unit 2)

“Here... one, two, three, four, five and then forward once doesn’t work.” (P9, unit 2)

“...because if you go up twice then you also miss putting on the crown.” (P4, unit 2)

“I discovered a mistake right away. Because when he grows up, then I put it here that
he’ll be normal again in a moment. But then he’s not through the door yet.” (P4,
unit 2)

37

5. Results and Discussion

“Then he already crashes here at the second step. And that’s where the end should
be. Here.” (P15, unit 2)

“I would simply say 5 times to the right here. ... Want 1, 2, 3, 4, 5, then he would
already be right here. Then 1 more time down, once - skip once and then he’s already
at the goal.” (P4, unit 2)

Mental simulation was something children did in many cases other than finding an
error, like programming and testing before executing the program.
During ScratchJr programming, real world allusions were less frequent, tended

to focus on things children visually saw and added just some imagination. It also
di↵ered from unplugged programming in that it had nothing to do with errors.

“We walk around on the moon.” (P5, unit 3)

“Huh? He jumps in the air and then always comes... ah, he should take o↵ from the
ground and then jumps onto the bed.” (P18, unit 3)

“The crab is sitting so nicely in our basketball hoop.” (P4, unit 3)

“But the chicken is supposed to be a spectator.” (P1, unit 3)

“Why is he going through the door like that?” (P18, unit 3)

“He runs into the wall hehehe.” (P15, unit 3)

“Hehehe. No, the dog has to jump out of the window.” (P14, unit 3)

One reason for this may be that, because of the digital nature of programming, it
is harder for children to have a sense of imagination. However, it could also be that
because ScratchJr is greatly visual, there is less need to imagine things.
Children used Logical Reasoning because of their implication from the real envi-

ronment onto the miniature programming environment. The robot on the field was
not just on object but he would execute their program and follow the path, thus
he is bound on physics. The visual feedback provided by the playing field with the
objects and obstacles also helped children planning and coming to a solution. Chil-
dren benefit from the age-appropriate programming and material [83, 66] and thus
it was possible for them to rely on previous knowledge and experience regardless the
new setting of programming concepts.
As with digital ScratchJr programming, Logical Reasoning was not used in the

context of error description or explanation.

5.1.5. Reaction to Given Bugged Program

The tasks with implemented errors in unit 2 had two purposes: to ensure that
children encountered an error and to observe how they reacted when the error was
not of their making. However, due to time limitations, only one of these tasks could
be completed by each group.
Often, however, the children did not read the question in the task or saw the given

program, so it had to be pointed out to them. Even after noticing and building the
given program, the task was overlooked by most groups, leading to confusion or
acknowledgment that this is strange:

38

5. Results and Discussion

“Huh? No, it doesn’t go any further.” (P4, unit 2)

“What do they want here? (giggling)” (P17, unit 2)

After the supervisors made sure that the groups read the task if the program leads to
the goal, most groups treated it with no reaction or answer to the question. However,
the program was not simply assumed to be correct, but was built and tested by most
groups before proceeding to find and debug the error(s). In addition, none of the
groups discarded the bugged program to start over with their own, as has been
reported in similar studies, see [4, 50, 56].
Only two groups explicitly answered the task question:

“Wait... Jump, one, two... eh... I don’t think he’ll make it to the goal. He’s already
stuck here. Look! One, two, jump this way. Then he goes forward twice. Then he
goes that way once and is supposed to go that way five steps. But it doesn’t work!
After that he turns like this and then he has to go forward three more steps.” (P15,
unit 2)

“But they said we should try it out and see if it works! [...] So it could be that it
doesn’t work. [...] No, um, it said - it only said that um, we should try out if it
works!” (P5, unit 2)

“And it does not work!” (P4, unit 2)

Due to the fact that the two groups initially paid attention to the question, they
started the tasks di↵erently than the other groups, who simply placed the command
cards and tested the the program. One of these groups was multitasking, with one
still reading the task while the other was looking for commands. This led to a small
argument between them:

“We are not allowed to do that. We have to do this!” (P3, unit 2)

“But you can do that too.” (P4, unit 2)

“Hopefully the pro- program will work, otherwise we will have to do our own.” (P5,
unit 2)

The other group started to answer the task question without laying out the command
cards, just looking at the task card and then verbally debugging.

“I don’t think he’ll make it to the goal. He’s already stuck here. Look!” (P15, unit 2)

In summary, it did not make a massive di↵erence whether the error was self-made
by the group or intentionally given by the task. The children’s changed behavior
was due to the change in the task rather than to errors they did not make.

5.1.6. Problems Due to the Tablet

Technically, these problems or “errors” are not related to programming, but the
frequency with which they occur may provide insight into the research question.
The problems range from not being able to find a feature, not knowing how to do
something, or something not working right away. While these problems were being
encountered the children were a little upset.

39

5. Results and Discussion

“The tablet does not want what we want.” (P3, unit 3)

“Ey, what, you can erase too?” (P4, unit 3)

“How do you actually delete these things?” (P7, unit 3)

“Theeen, is there an eraser here?” (P13, unit 3)

“It won’t! What did you..?” (P15, unit 3)

“Where are we now? Help!” (P3, unit 4)

“And how can you delete the stamps again?” (P6, unit 4)

“We have to delete that. How can you delete it?” (P13, unit 4)

“(whispers) Sooo. (wiping sound and suddenly everyone reacts quite startled).... Oh
no, the scissors were on!” (P10, unit 4)

“First we have to name him. Oh, no, you can’t.” (P11, unit 4)

“Hehe and that one I can’t delete. Shit.” (P16, unit 4)

One possibility for the contrasting response to these issues may be that these prob-
lems are felt to be genuinely out of control for children, as opposed to implemented
errors. The fact that programming takes place on an unmodifiable tablet, rather
than with physical objects that can be manipulated directly, may contribute to this
changed reaction. In addition, when analyzing the responses during transcription,
the change in responses was noticeable not only with problems due to the tablet, but
also with programming errors. If something did not work for a while, the children
sometimes sounded a little upset or frustrated. This, too, could be explained in
terms of the perception of control over the tablet.

“Hehe. The game is stupid. Tablets don’t want as much as we want.” (P3, unit 3)

“Why can’t you delete the one behind it?” (P18, unit 3)

“K where is a K here? Orrrh ey, I hate the keyboard!” (P4, unit 4)

“I can’t find the exclamation mark, though. Eyy.” (P4, unit 4)

“Huh why doesn’t it paint anymore?” (P16, unit 3)

“Yes we want... we are supposed to change the background here, but it doesn’t
change.” (P17, unit 4)

To conclude, the responses to errors, no matter where they come from, have
changed when interacting with the tablet.

5.1.7. Conclusion to How do children react to programming
errors, and are there di↵erences between their own and
implemented errors?

There were no di↵erences between the groups in the children’s responses to errors,
whether they had the insight to solve the error immediately, analyzed the behavior
of the program, asked questions, or tried to implement real-world physics into the
unplugged or block-based programming. In some instance they were happy to have
found the error.

40

5. Results and Discussion

When confronted with intentional errors in the tasks, children treat them no
di↵erently than they would their own program to build, test, and debug. However,
there are slight variations in the reactions when programming unplugged vs. in
ScratchJr. The source of the error did not matter. It may be that errors that occur
when programming on the tablet are perceived di↵erently, and this may come from
the perception that they cannot control how the tablet does things.

Errors that occur in a learning environment are expected by children, so they
handle them without diculty.

When the settings of both are very similar, the reactions to implemented errors
do not di↵er from those to self-made errors.

Problems and errors resulting from working on the tablet changed the response
to errors, as they were perceived as more out of control.

5.2. Answer to How does programming and
debugging compare in unplugged and
block-based programming?

For this research question, the programming and debugging parts were analyzed
regarding the behavior across the di↵erent groups and units. The programming was
designed to be as similar as possible in command design and function and building
the program that the programming mainly di↵ered in unplugged and block-based.
Programming and debugging parts were closely intertwined, so debugging phases
like testing, bug identification and bug fixing were mixed into programming. This
was due to the children solving the tasks in an exploratory way, i.e. they also
discovered something wrong or an error while programming, which led to debugging
before testing a finished program.
While analyzing, some behavior showed up that was repeated often in each of

the units. Prominent are Pair Programming, Thinking Aloud, clear Testing Phases
and scattered Debugging Phases, which appeared during all of the units. However,
some behaviors were specific to unplugged units, such as Mental Simulation and
Embodiment, and in ScratchJr units Backseat-Programming and Distraction by the
Tablet.

5.2.1. Pair Programming

Pair programming is something a developer team does to bring a novice programmer
up to speed when paring with an experienced developer [80]. The new programmer
gains some insight about techniques and procedures while watching the experienced
person. At the same time pair programming can be done with equal experienced
programmers, who mutually help and control each other. While programming dur-
ing the units, the children used something very similar to pair programming in their
groups. In the analysis, interactions among the children, such as someone asking

41

5. Results and Discussion

the group for help with something, someone taking the lead and directing the pro-
gramming, someone correcting something, and someone explaining something to the
other members of the group, were attributed to pair programming (see Table 5.1).

Table 5.1.: Quotes from types of Pair Programming Behavior

Pair pro-
gramming
attributes

Quotes

Asking for
help from
group

“Can you give me one go down?” (P6, unit 2)
“Jumping? No. I don’t know now.” (P5, unit 2)
“Huh, he can leave those on, can’t he?” (P8, unit 2)
“Step forward, where is step forward here?” (P4, unit 2)
“Then... what comes next?” (P11, unit 3)
“Three times forward, right?” (P13, unit 3)
“Say hello. Where was that speaking?” (P9, unit 3)
“Now the end and this- this end?” (P15, unit 3)
“And then we need a wizard too, don’t we? Don’t we?” (P2, unit 4)
“What else do we need?” (P4, unit 4)
“All right, so what does the frog do?” (P4, unit 4)
“How many times the (smaller?)?” (P8, unit 4)

Leading
and
directing
group

“And there has to be a get bigger command.” (P6, unit 2)
“We need 1 time right and 2 times this orange ones.” (P4, unit 2)
“So a 2 has to go in here....” (P4, unit 2)
“Wait. No, that was just right the way you laid it. Like this. And then step forward.”
(P11, unit 2)
“That’s what we need! We need that! We need that!” (P17, unit 2)
“Why don’t you put the red one there?” (P3, unit 3)
“Like this. We still need these in blue, we need these in blue.” (P12, unit 3)
“So. And now we still have to do the crab.” (P12, unit 3)
“I think it’s on this one. Yes. Can I? Now you can do it.” (P9, unit 3)
“Now you. And put five up there.” (P8, unit 3)
“Just write another 1.” (P18, unit 3)
“We still have to do the red wizard quickly.” (P13, unit 4)
“So we need an Eskimo. (exhales) I know how you erase. You need to go back.” (P18, unit 4)

Correcting
group

“You don’t need to, because you’re standing in the doorway.” (P18, unit 2)
“Uh, we don’t need that.” (P15, unit 2)
“No, he has to turn around first. Clever guy.” (P18, unit 2)
“Wait. No, that was just right the way you laid it. So.” (P11, unit 2)
“There it is. Only the blue ones.” (P3, unit 3)
“No you don’t need that!” (P13, unit 3)
“You mean the bracket.” (P7, unit 3)
“For the chicken, we first need to do the beginning.” (P15, unit 3)
“Eh hee? But this is a green letter, not a yellow one.” (P14, unit 3)
“Why did you actually make two babies now?” (P4, unit 4)
“Oh, [P8]. We just remembered, we have, no, there’s no...” (P13, unit 4)
“Okay, here we do one, oh I’ll do three, we need three here.” (P11, unit 4)

Explaining
to group

“Look, we’re- Look. Here is the start. Then up. Put on the crown.” (P1, unit 2)
“Um, don’t have to go up there again. Because look...” (P2, unit 2)
“Jumping on the spot... Because the jumping over field is this one.” (P15, unit 2)
“Yes, but look, here it’s one, two. And here you have to do one, two, three.” (P15, unit 2)
(P3 and P6, which are not programming, count the placed commands aloud) (unit 3)
“First of all, he has to get smaller.” (P1, unit 4)
“Exactly. But snail’s pace is not yet. Look, if you click them yet, they will become even
faster.” (P3, unit 4)
“No, this is where we have to take them! There. There, no.” (P14, unit 4)

42

5. Results and Discussion

Children did benefit from working in a group and programming together. They
helped each other, asked for help with searching and finding the right commands,
corrected each other and sometimes someone took the lead and said what has to be
done. Pair programming can be faster for simple tasks or more ecient for more
complex tasks [33]. Both types could be present, as asking for help to find something
or correcting someone was faster then searching or later fixing the error. Another
result of pair programming is that by communicating with their group members,
children gain a deeper understanding of what they are doing [16]. This refers to the
need to follow what others are doing, thinking about it, and using terms and con-
cepts previously unknown to them (e.g. commands), or making up their own that
the others understand (cf. section 5.2.8). Strawhacker and Bers [72] reported simi-
lar behavior with “multiplayer programming”, which could benefit social reasoning
skills.
While it was also a habit during ScratchJr programming, pair programming has

slightly declined. Pair programming was more prominent during the introduction
to ScratchJr at the beginning of unit 3, helping the child who was programming by
prompting the commands used and in unit 4 while figuring out how to build the
story scenes.

“First the start...” (P2, unit 3)

“So, now up twice. It says jump on it twice.” (P3, unit 3)

“The first thing we need is a start.” (P4, unit 3)

“So now two times up.” (P4, unit 3)

“There must be a 1.” (P7, unit 3)

“But wait a minute here green.” (P12, unit 3)

“At the end we have to do the castle.” (P11, unit 4)

“Stoppp, stoppp, stoppp. Ice desert we must now (inaudible).” (P14, unit 4)

One possible explanation for the decline of pair programming as a collaboration in
the group could be that the tablet made it impossible for other non-programming
children to chime in and help. Instead, what some were doing was telling the child
programmer in an imperative language to do something. This will be addressed in
section 5.2.6. Another reason may be that the time they spend programming has
also decreased.
To summaries, the children worked collaboratively within their groups, similar

to pair programming. It was especially present in unit 2, which helped them gain
a deeper understanding of the programming concepts presented. During the pro-
gramming of ScratchJr, the communication between the children was reduced in
comparison to unit 2, and there was more frequent use of a command tone.

5.2.2. Thinking Aloud

Thinking aloud is way to “verbalize their thoughts” to better understand someones
problem-solving process [24]. During the programming children used it often without

43

5. Results and Discussion

being reminded by one of the study supervisors. These are just a few examples of
how children formulated their next action(s) in unit 2 :

“(quietly) Two (inaudible). (louder) Two to.” (P2, unit 2)

“To... this... Then... this...” (P8, unit 2)

“Eh, we need ri... No, wait a moment. Making small... yes. Step forward...” (P13,
unit 2)

“No wait he can... ah yes right... He has to...” (P17, unit 2) “Oops, first you have
to... hat has to go there. Or?... Nope.” (P15, unit 2)

“Two steps ttt-to. Two steps to the right... no, left... And right... Then...make
yourself very small, please.” (P14, unit 2)

This kind of thinking aloud are forms self-talk found in younger children during
problem-solving activities [82]. Both forms, overt (private speech) and covert (whis-
pers and muttering) [82] occurred here when children were programming, which
research found to be an indicator for “guiding, planning and regulating their own
thinking and behavior” [82].
This appeared more often during unit 2. While working on the tablet children

used thinking aloud less frequent in unit 3 and barely in unit 4.

“4 to... So first... Start.” (P2, unit 3)

“Then... Wait, we’ll d- we’ll do it together. Fooour.” (P6, unit 3)

“Does that thing still have to go in there? Oh, it doesn’t.” (P7, unit 3)

“First we need the...” (P4, unit 3)

“Um... So. And there-Ne. Yes and then speak again. Speech bubble.” (P12, unit
3)

“(quit) Jumping.” (P8, unit 3)

“That- and now uh uh uh....” (P14, unit 3)

“Sooo. Theeeen... it goes 6 times...” (P15, unit 3)

During the few times someone thought aloud they were the one programming on the
tablet. This becomes more evident when looking at the transcript of unit 3 where
one child decided to work alone:

“Ahhh... Hmmhmm... This is the one for now. That’s right. This is this... Now
this... two to (inaudible), that’s already... And now the end.” (P16, unit 3)

“Ah, meeting... Hmm... Two up... So, two uppp. Um... Gosh.” (P16, unit 3)

“1, 2, 3, 4, 5, 6, 7, 8, 9, 10, (begins to whisper) 11, 12, 13, 14, 15, 16, 17... 17
boxes.” (P16, unit 3)

“Umm... hmhmhmhhhmmmm... puuuhhh.... so... now comes the people.” (P16, unit
3)

“Soo. Nah, one bigger. F↵↵f, hm, hm, make bigger.... (Inaudible)... Mhm, mhm,
mhm, mhm... mhm, mhm, mhm... mhm, mhm, mhmmmmm... nah, nobody can sit
on that. F↵↵... Perfect, and now this has to go, like this. And now I’ll look at it
again, or wait.... Beginning...” (P16, unit 3)

44

5. Results and Discussion

One explanation could be that the tasks in both ScratchJr units were designed to be
more independent and without a set goal. As a result the problem-solving from task
to finished product was not as strict as in unit 2. However, another explanation may
be that programming occurred less frequently on the tablet because children chose
ScratchJr projects and programs that did not require problem-solving. Another
reason could be the distraction caused by the features in ScratchJr. This will be
picked up in section 5.2.7.
To summaries it thinking aloud was often used by children during problem-solving

situations. During ScratchJr programming this declined and is limited to the child
on the tablet.

5.2.3. Testing

In each unit, the children tested their programs to see if they would work. This was
done automatically after the program was finished, but in some cases the children
decided to test parts of the program before an error was found or the program was
finished, or specifically while programming in ScratchJr to see what a character did.

“Can we first test how it works?” (P3, unit 2)

“Let me take a quick look. (wants to test)” (P17, unit 2)

“We can easily test this ourselves.” (P17, unit 2)

“So now let’s test it.” (P3, unit 3)

“So, now test it. (P3, unit 3)

“We have to see if it works first.” (P3, unit 3)

“That’s (inaudible), we’ll just give it a try.” (P1, unit 3)

“Nah, let it start first.” (P15, unit 3)

“Ah yes, here we have already. We have to go through the story once!” (P9, unit 4)

“Go ahead and run the program already.” (P15, unit 4)

“And now we’ll test it again. So let’s get rid of this for now.” (P16, unit 4)

Children intuitively tested their programs before debugging, in comparison to Klahr
and Carver’s debugging phases, the program evaluation [44]. In addition, testing was
not used as part of the programming, i.e. placing a command and testing how the
robot or ScratchJr character moves and repeating this process. Instead command
cards were placed as a sting of actions or the program was completed and then
tested. This is a direct di↵erence to the trial and error or brute force strategy used
by children in similar studies, see [44, 56].
As a di↵erence during ScratchJr programming, testing was mainly used as a way

to see what characters will do. Through behavioral observations and transcript
analysis, it appears that children did not always predict in advance which character
movements the program would translate beyond the introductory ScratchJr tasks.
In summary, tests were frequently used by the children groups as a way to ver-

ify their programs or action of a ScratchJr character instead of a phase of active
debugging an error.

45

5. Results and Discussion

5.2.4. Debugging

Since programming and debugging were not clearly separated as the debugging
phases [44] or error location techniques [38, 54] states, problem-solving approaches
were mixed into the programming.
However, there was an apparent contrast between debugging in unplugged pro-

gramming and ScratchJr programming. During the unplugged debugging, children
had no problems to repair the errors once they found them, as it also was stated by
Klahr and Carver [44] in their study.

“Oh now we have a problem. Jump forwards not backwards.” (P3, unit 2)

“We made a mistake! This should not be here! It has to be here!” (P4, unit 2)

“There is a step forward missing.” (P9, unit 2)

“And you had that wrong. Either- there should be a step forward.” (P16, unit 2)

“But that’s where we have to make us tall.” (P14, unit 2)

“Because here’s the problem. He wants to go there.” (P4, unit 2)

Even if they were not sure about a fix, they still voiced their guess to their group,
which could help because of their pair programming collaboration (cf. section 5.2.1).

“One turn to the riiiight, no left.” (P5, unit 2)

“Aaaand... and one more forward.” (P8, unit 2)

“Mmh... Then we have to go a bit to the side here.” (P15, unit 2)

“Sooo... I would say jump twice.” (P15, unit 2)

“We meh - we just take this...” (P4, unit 2)

Through visual feedback, the children had an overview of the program and the
playing field with the start, goal, and state of the program. This may have helped
them with their thinking process and also with debugging, as some children may be
overwhelmed when faced with more cognitive load during programming, i.e. multiple
errors and longer programs [68, 56, 72].
During ScratchJr debugging, children often only voiced the programs or character

behavior as described in section 5.1.2. Actual cases of fixing the error were less
common. Similar behavior was found by Ahn [4] where children performed better
at unplugged debugging compared to digital debugging.

“Wait t-, let’s just leave it. (error is just left like that)” (P3, unit 3)

“Uhh the stop is missing. And we have to play it slowly.” (P7, unit 3)

“No, that, goal. The goal is missing. The end.” (P9, unit 3)

“You have to- you have to place the end there.” (P13, unit 3)

“Then it has to go one step further.” (P16, unit 3)

“We have forgotten the end.” (P2, unit 4)

“The goal was not there.” (P4, unit 4)

46

5. Results and Discussion

“That’s, that’s funny. He’s not using the others’. It starts with the... Wait, the lizard
shrinks first.” (P13, unit 4)

“Look, there’s always this one. You see, that’s why they disappear!” (P15, unit 4)

“Nah, changing the scene comes with it.” (P18, unit 4)

In these cases, debugging is similar to unplugged, pointing out the missing or incor-
rect command. However, just describing what happened without saying anything
about how to fix it or discussing it afterwards was observed more often. Observation
provides more insight into this matter; children during these times either stopped
communicating with their group members, sought help from a supervisor, or just
left it the way it was and did something else (programming or designing characters,
see section 5.2.7). The fact that more questioning was done during ScratchJr pro-
gramming and debugging, shows that it possibly was more dicult for the children
then unplugged programming and debugging.

“Yes, but why doesn’t that go there?” (P3, unit 3)

“Nah, where do I put this?” (P16, unit 3)

“What? What do I have to do now?” (P8, unit 3)

“Here... Maaaan, can you come and help us out a bit?” (P13, unit 4)

“How do you run to the other screen? How do you switch?” (P8, unit 4)

“Ready... Okay! Start... Oh no, it doesn’t make any seeeense! Uh... (signs for help)”
(P13, unit 4)

“Oh. Wait. Oh, oh yeah now. Wait. On the white and ah nah there’s something to
write on. I don’t know, wait a minute. (signs for help)” (P11, unit 4)

“Um, how can you make the dragon breathe fire?” (P6, unit 4)

“We have to ask again. [...] We want him to call out ’Show yourself ’ after this
Northerner, because he’s hiding, but now we’re going to Putin again and there...?”
(P18, unit 4)

“Yes we want... we are supposed to change the background here, but it doesn’t
change?” (P17, unit 4)

Especially during unit 3 and unit 4 it became more obvious. In unit 3 the children
had a choice of what to do in their group, choosing things they wanted and con-
cepts they understood, similar was reported by Bers et al. [14] where children chose
concepts that matched their programming knowledge. In unit 4, however, they were
limited to the story the other group chose and what actions to program. This led
to more diculty, as some groups even chose to write more dicult stories for the
other group:

Children trying to make it dicult:

“Do we want to make it dicult for the-” (P1, unit 4)

“It’s going to be dicult.” (P3, unit 4)

“We make it extra dicult for them.” (P14, unit 4)

“With this story, it could be quite dicult.” (P16, unit 4)

47

5. Results and Discussion

“We are making a dicult story for them.” (P13, unit 4)

Diculty perceived by children:

“P↵h (exhaling) They chose a completely stupid story. Our story was still fine.” (P9,
unit 4)

“Your story is just a bit dicult.” (P15, unit 4)

“Your stories so dicult (inaudible)” (P17, unit 4)

“Yours was also so strangely dicult.” (P18, unit 4)

Moreover, non-communication with the group, or lack of help or participation from
members during the times and doing other things, would also indicate an increased
perceived diculty of debugging by the children. This behavior could be related to
the problems they had with the tablet, see section 5.1.6, and similarly classify the
errors as unsolvable or helpless against.
One other possible explanation could be that the ScratchJr programming was

more abstract and depended on the imagination of the children to program an
action to appear like the action and not to take it literally:

“But how can you magically move the ball? (wonder if there is this command)” (P7,
unit 3)

“Is there any magic here?” (P1, unit 3)

“Where is the kissing program?” (P3, unit 3)

“Um, how can you make the dragon breathe fire?” (P6, unit 3)

There was no real goal other than ’this is what it should look like in the end’ as in
unplugged programming with an exact goal to achieve.
However, on a positive note, during unit 4, when the programmed story was shown

to everyone, sometimes the children of the other group helped debug the remaining
errors by pointing them out and making debugging suggestions.

“There with this, look when you put these commands in, uhm, wait a minute, we go
to back and that, then you take the command.” (P13, unit 4)

“Take that away. Take it away. And then... [...] That command.” (P8, unit 4)

“Then you go, you take away the command and that. And take this.” (P8, unit 4)

After the supervisor asked what the error was:

“Well, they did. I think they forgot to put this in. And then it didn’t work.” (P8,
unit 4)

“The goal was not there.” (P4, unit 4)

“Well, we just... Well, we forgot to put this in.” (P13, unit 4)

To sum it up, children had an easier time debugging unplugged programs than
ScratchJr ones. This could be due to the visual feedback provided by unplugged
programming in terms of seeing what is happening. The observed fewer debugging
attempts during ScratchJr debugging could be due to the perceived diculty, sim-
ilar unpleasant experiences with tablet problems (see section 5.1.6), or increased
abstraction of programming.

48

5. Results and Discussion

5.2.5. Mental Simulation and Embodiment

Mental simulation is the transfer of a thought into an action [23]. During the
unplugged programming, children often used it before putting down the commands
or to mentally test the way of the robot. It can also be a form of thinking aloud
(cf. section 5.2.2), in which the thoughts are formulated with substitute words for
simplification.

“We have to go up. And then so and so (quietly, gets talked over) so and so and
down through and so....” (P1, unit 2)

“Or like this here. Soooo, soooo, so, so and so.” (P8, unit 2)

“One, hm hm hop and then hn hn.” (P4, unit 2)

“One step forward, then jump over the field ding dong ding.” (P3, unit 2)

“Then standing there I would turn like this.” (P8, unit 2)

“Nope, nope, nope. Wop, wop. He’ll be heeeere. So, we have to go here now. Because
he’s here.” (P13, unit 2)

“Ummm, hm hm hm hm hm hm.” (P16, unit 2)

“And there one, two, three, four, five, that’s right.” (P15, unit 2)

During the simulation, the children used various techniques: counting, command
names (e.g. step forward), their interpretation of the command (e.g. hop instead of
jump over a field), and non-verbal sounds (e.g. “hm”, “so”).
Thinking and imagining about the action the figurine would execute is also a form

of embodiment [30]. At the same time, the children used the figure before executing
the program without being instructed to do so, which also indicates embodiment.
Both helps them to build their understanding of things through a substitute phys-
ical experience [5]. The playful programming environment may have provoked this
behavior to explore and play with the possibilities, as noted earlier in section 5.1.4.
This behavior was exclusive to unplugged programming. During the programming

of ScratchJr, the children did not use neither mental simulation nor embodiment as
a means to help with the programming. However, in all groups it was observed that
they were imitating the sounds of ScratchJr or the touch sound the tablet would
make.

“She does- she does more like this. (pretending).” (P3, unit 3)

“Duhh.” (P4, unit 3)

“Dub, dub, duuuh. (sounds)” (P1, unit 3)

“(does pop sounds)” (P5, unit 3)

“Dud. (Geräusch)” (P9, unit 3)

“Dududududu.” (P18, unit 3)

“Dududu.” (P14, unit 3)

“Ppp. (Geräusch)” (P17, unit 4)

“Dud.” (P12, unit 4)

49

5. Results and Discussion

A possible reason for the lack of this behavior in ScratchJr programming could
be the lack of enough visual objects to transfer the thought to. Since these are not
actions that children can do (i.e. actions that the characters do) [23], except for
touching the tablet and then imitating the sound. So simple mouth-made sounds
could be a sort of substitute for mental simulation.
In summary, children used mental simulation during unplugged programming to

help them think about their programming actions. During ScratchJr programming,
this behavior was not observed, but instead the children substituted sounds with
those they made themselves.

5.2.6. Backseat-Programming

A behavior that was only observed during ScratchJr programming is backseat-
programming. The name is directly derived from “backseat gaming,” which refers to
“non-players interfering with the game by making unsolicited comments and opin-
ions” [55]. In this context, it is the communication from the group members to the
child who is programming with the tablet in an imperative mood.

“(whispers) You have to go on that.” (P2, unit 3)

“And now press the red button.” (P3, unit 3)

“Here you have the function list. You first have to press here now. And now you
have the function list here.” (P3, unit 3)

“You have to do that there.” (P5, unit 3)

“You have to go on orange, on orange!” (P1, unit 3)

“Now you. And put five on there.” (P8, unit 3)

“No, you have to do tw-.” (P14, unit 3)

“There you have to go down 11, there you have to go down 11.” (P18, unit 3)

“Come on, do it!” (P4, unit 4)

“And now you still have to program these.” (P15, unit 4)

An explanation for this could be that only one child is in control of the tablet,
as they were encouraged to do so and then take turns. The only thing the other
group members could do during the programming was to verbally help or discuss
something, unlike in unplugged programming where children could constantly help
with something actively. As a result, when the children could not do something,
they sometimes tried to control what the child was doing with the tablet.
Similar to this behavior is pair programming when leading or directing group

members (cf. section 5.2.1). The di↵erence, however, is that the child doing it was
programming at the same time.

5.2.7. Distraction by the Tablet

ScratchJr has many features besides programming, such as designing and coloring
own characters. As a result, children spent a lot of time doing that instead of

50

5. Results and Discussion

programming. Almost always, when children chose a character for their program,
they changed the color or customized it in some other way.

“(records) Hello (inaudible). How are you? How’s it going?” (P3, unit 3)

“And here you can even paint, your own background.” (P3, unit 3)

“Hehehe. Can we finally color in the wizard now?” (P7, unit 3)

“And the belly I’ll do in red. The hat I’ll do in blue.” (P11, unit 3)

“But we can also change the cat!” (P9, unit 3)

“Shall we take underwater or jungle?” (P15, unit 3)

“We have to here! We can paint there.” (P3, unit 4)

“Wait, we have to color the dragon...” (P6, unit 4)

“We take the horse. Which we then change.” (P10, unit 4)

“Here we have to paint Emila2 again. Green.” (P9, unit 4)

“Yes, that’s nice... Yes, or this? And the dots?... What? Yes, like this.” (P13, unit
4)

As a consequence, programming became secondary and led to children not explor-
ing the commands and functions of ScratchJr, resulting in some children missing
something or getting confused, especially in unit 4.

“The ball moves too. The cat has to do it.” (P3, unit 3)

“The Eskimo- the Eskimo says hello to the penguin. Where do you use the hello
button?” (P1, unit 4)

“We have to ask again.” (P18, unit 4)

“How can you change the backgrounds in this?” (P10, unit 4)

“Wait, I want to get the Tic2 in here now. How do I do that?” (P17, unit 4)

“We have to delete that. How can you delete it?” (P13, unit 4)

In unit 4 the groups had to program the written story of the other group. Out of
the 17 minutes for the first group (because they needed more time for explanations)
and 27 minutes for the other groups, the groups spent on average 61.19% of the
time programming and 17.47% of the time designing the scenes and characters. The
remaining time was spent discussing or doing something else. See Appendix D for
the calculation.
In a short, programming in ScratchJr led to some distractions during program-

ming, may it be because only one can actively program, the tools and functions
in ScratchJr or both learning how to navigate ScratchJr and understanding this
programming. All of this combined could have led to children not getting the un-
derstanding of programming that they got during unplugged programming, where
there were fewer interruptions.

2This is a character in the story of the other group.

51

5. Results and Discussion

5.2.8. Other Interesting Things

There were other little things that were observed during the programming that did
not fit into a category, but could be insightful.

Number of Commands One command that is used in almost every program is
the one forward command. In unplugged and ScratchJr it works similarly, but in
ScratchJr the perspective is di↵erent and one command block can count for multiple
steps. Figuring out how many steps are needed was approached di↵erently by the
children depending on whether they were programming unplugged or in ScratchJr.
During the unplugged programming, the children counted the fields the robot has to
go on.

“One, two, three and!” (P3, unit 2)

“I just want to say five times to the right here. ... Want 1, 2, 3, 4, 5, then he would
already be right here.” (P4, unit 2)

“(quietly) One, two, three.” (P9, unit 2)

“Five. One, two, three, four, five.” (P8, unit 2)

“One, one, two, three, four, five, six. (places with the figure) One, two, three, four,
five, six. Okay. Perfect.” (P12, unit 2)

“One, two, three times you have to go forward.” (P15, unit 2)

“Yes, but it would be much easier if he (taps on the pitch) one, two... three, four,
five... that would be easier.” (P14, unit 2)

“Baaash... One, two, three. So only three.” (P15, unit 2)

“Now he’s rotating here. And there one, two, three, four, five, that’s right. We can
take that down too. And... five.” (P15, unit 2)

“Then ma then we better do the repeat command.... One, two, three, four, five, six
times...” (P15, unit 2)

However, while programming ScratchJr, the distance the character has to move was
not counted, even after the supervisor showed the grid function for easier count-
ing. For the most part it was guessed, and in some cases the number was greatly
exaggerated.

“Turn 220 times to the right.” (P4, unit 3)

“Yes, we put that in a 55. Should that (inaudible) the thing should do 55 times.”
(P7, unit 3)

“How many times do we want to do the loop? 18 times?” (P7, unit 3)

“150(?) times, nah 100 times up!” (P7, unit 3)

“99.. 10 times is then enough upwards. There 10 times is enough upwards.” (P7,
unit 3)

“...we do until he’s out of the scene. That’s about... let’s just do... 11.” (P8, unit 3)

“We’ll put a hundred in there!” (P14, unit 3)

“Hun- write a hundred and eighty there and then it will work.” (P18, unit 3)

52

5. Results and Discussion

“Then we write 66 in there.” (P18, unit 3)

“No, then we write 90. That is (inaudible)” (P14, unit 3)

One explanation for this contrast between the two di↵erent approaches could be
that the children did not perceive the perspective of the environment and the char-
acters, so they chose a high number to be sure. The clues they had during the
unplugged programming were probably more understanding for them to use count-
ing intuitively, and so with the changed perspective it may not be as obvious or too
abstract for children. Alternatively, they may have chosen a high number just to
see what would happen and have some fun.

Short Communication Furthermore, during the programming of ScratchJr it was
noticeable that the communication within the group sometimes became shorter and
more reactionary. This refers to one-word sentences and having to say something
about almost everything. In addition, the children were quieter at times, which may
have been during times when they were paying attention to the tablet.

Changing and Making up Own Commands In some instances, the children used
di↵erent names for some of the commands than they learned in unit 1 or can read
in ScratchJr. When programming and executing the program, they use their new
names, such as “So first the flag” (P3, unit 2) for start, “Do the baby.” (P6, unit
2) for crouch command, “[...] snail’s pace.” (P3, unit 2) for slow command, “So,
here is the house.” (P12, unit 2) for goal, “And now close the bracket again.” (P11,
unit 2) and “[...] multiple-thingy command execute or lie down.” (P3, unit 2) for
the repeat command.
It was also observed that children came up with their own commands during both

unplugged and ScratchJr programming. Why they did this could be sometimes
playful imagination, thinking about possibilities, making the program easier with
their own command, or projecting their expectations onto it.

“No, the robot has transformed. Transformation card.” (P17, unit 2)

“There’s a TnT on it, if you do that, um, all the obstacles are gone for(?) the robot.”
(P16, unit 2)

“Or there is also flying.” (P17, unit 2)

“[...] take a journey through time to here?” (P6, unit 2)

“Is there a do or opener here too?” (P6, unit 2)

“Is there any par- particular sign to go through the door?” (P4, unit 2)

During the programming in ScratchJr this imagination was less common, but in a
similar but di↵erent way, kids sometimes asked for functionalities they knew from
other tools.

“Where is the delete all button?” (P3, unit 3)

“Hahaha! We’d better take that one. Delete. Where is the recycle bin?” (P3, unit 3)

53

5. Results and Discussion

“Wait, there’s a delete button here somewhere, isn’t there? No, go back. Where is
the delete button??” (P3, unit 3)

“Is there also an eraser??” (P16, unit 3)

“Do you also have thiiiis button?” (P16, unit 4)

“Is there an eraser or something?” (P4, unit 4)

Making up and changing command names to their own creation could be due to
the fact that the programming course was introduced as a game. So it was natural
for children to use their imagination. It is notable that the other children in their
group understood what they meant. Making up their own terms for the commands
and objects may indicate that the children were comfortable with the concepts and
understood them well enough.

5.2.9. Conclusion to How does programming and debugging
compare in unplugged and block-based programming?

The programming is similar in some aspects and di↵erent in others between the
unplugged and ScratchJr programming, see Table 5.2 for an overview. In summary,
programming has changed or even become less e↵ective with ScratchJr. This could
be due to the change of perspective from top view to 2D side view, the change of tasks
from precise tasks to more or less independent story programming, programming as
a group to have only one person in control, and due to the previously explained
things that led to less time programming. These changes may have influenced the
active learning of programming and debugging. Furthermore, the presented and used
course method follows the concept of presenting a problem and then solving it with
the available programming commands. The change to another, more independent
method (programming a story), which assumes that the children have learned the
commands, recognize them and are then able to program multiple characters to
form a story, could also be the main reason for the change and the impediment to
learning to program.
ScratchJr is a nice tool for children to learn that their indirect action (building the

program) can a↵ect the characters, and then act as a stepping stone to learn the ba-
sics before moving on to Scratch. The playful setting with characters, backgrounds,
and scenes makes programming more about exploring and building a story and less
about solving a problem. This is perfectly fine, but since this programming course
focused on programming as a means to solve problems and become more indepen-
dent with it, this course method was not a good fit for learning to program with
ScratchJr. Nevertheless, Bers [11, 12] and Strawhacker and Bers [72, 71] showed
that ScratchJr can be a good tool for learning programming if used in an adequate
way.
On the other hand, unplugged programming seems to have been e↵ective, as it was

also reported by Bati [9]. Children used intuitive problem-solving techniques, worked
together in groups, and debugged. They did this independently, which is supported
by research in early childhood education that children should be encouraged to try

54

5. Results and Discussion

Table 5.2.: Overview comparing programming and debugging between unplugged
and ScratchJr programming

Behavior Unplugged programming ScratchJr programming

Pair programming (to a lesser extent)

Thinking aloud
(to a lesser extent only

with the active program-
ming child)

Testing Testing the program See what happens

Debugging Error detected and fixed
Error/behavior de-
scribed and often left
alone

Mental simulation
and embodiment

Used for problem-solving
⇥ (imitating tablet
sounds)

Backseat-
programming

⇥

Tablet distraction ⇥
Choosing command
number

Count the fields
Guess, often an exagger-
ated high number

Short communication ⇥
Changing/making up
commands

(to a lesser extent)

things on their own [77, 60]. It seems that the course method was suitable for this
type of programming.
There are two ways to deal with the above complications without being limited to

one programming method. One is to change the tasks presented while programming
with ScratchJr. Instead of making them very independent and having loose struc-
ture, there could be predesigned ScratchJr programs for children to fill in, change
or to complete with commands. Similar was done in the study of Chou [18]. Alter-
natively, to leave a little more freedom, the tasks could be for children to “reverse-
engineer the ScratchJr program” by having them watch the story or animation and
try to replicate it, as was done in the Strawhacker and Bers [72] study.
Another way could be to change the block-based programming part of ScratchJr

to something else. This could be robot programming on a similar playing field or
maze with block-based programming on a tablet or as an intermediate step hybrid
programming. Using these programming methods, programming is much more iden-
tical to unplugged programming with the top view perspective and having tasks to

55

5. Results and Discussion

lead something from start to the goal.

Programming and debugging are much di↵erent with the presented course
method.

The presented course method is appropriate for unplugged programming.

5.3. Answer to Is there a transfer of knowledge from
unplugged to block-based programming?

In an attempt to answer this research question, the beginning of unit 3 was de-
voted to an introduction in which children were shown printed ScratchJr programs
and then asked what they would expect from the program without programming it
first. For the first program they answered as the character would be the 3D robot
accordingly, e.g. jump over a field instead of ScratchJr jump up and down.

“Yes, that’s easy. Jump one forward and then the goal.” (P3, unit 3)

“Um, he runs... he ju... [...] Or up? Or jumps. Up, I think up.” (P11, unit 3)

“He goes forward twice. [...] Up, then he turns 12 times, then he goes down twice,
then he runs again....” (P12, unit 3)

“She runs two steps forward, then turns twelve times, to the right, goes back two
steps, jogs, and jumps two times and then it’s over.” (P16, unit 3)

“Twice up...uuuh....rotate twelve times?! (confused) ...twice down.” (P4, unit 3)

“Goes forward. So six times forward, then it says hello and then...” (P13, unit 3)

“Hello. Then it sends a letter and then it goes.” (P8, unit 3)

“And shrink twice.” (P4, unit 3)

“Huh, we’ve already gone at a snail’s pace, [P3].” (P2, unit 3)

After programming it and seeing the di↵erent movement of the character compared
to the robot, the children quickly recognized this and changed what to expect of the
character’s movement for the next programs. By the time they got to tasks 3 and 4,
which had two characters that were supposed to interact in ScratchJr, the children
had trouble realizing that they belonged together.
Perhaps they expected the same in ScratchJr because they knew from the previous

units that there was only one robot with only one program. Another reason could
be, as mentioned before, that the children often did not read the task, so they may
not have realized that the problem definitions are a separation between the tasks
and the programs.
Another indication that the children were able to remember what they had learned

is that on many occasions they identified the commands that they had previously
learned. The same happened even with some command functions that were changed
to fit real-world physics (e.g. character gets smaller to crouch). Children still
recognized them before switching to the ScratchJr name after reading or seeing it.

56

5. Results and Discussion

“That’s the robot!” (P6, unit 3)

“Hold on, we have to give commands somehow... So look here.” (P15, unit 3)

“Six six forward. This way. No!” (P9, unit 3)

“Uh, goal, 5 forward, jump over twice and then on the goal.” (P11, unit 3)

“Well, I’ll start... first... Where’s the goal flag there?” (P9, unit 3)

“And 5. So now I’m going to jump over twice.” (P9, unit 3)

“First the starting flag. So...” (P16, unit 3)

“Getting faster. Where is getting faster?” (P6, unit 3)

“First, walk like Sonic.” (P4, unit 3)

This can be attributed to the design of the unplugged commands, even with some
small changes, they were closely related to the ScratchJr models that children could
easily understand the “new” ScratchJr commands only with their previous knowl-
edge.
Furthermore, the children not only transferred the knowledge of the single com-

ponents, but also the knowledge of how to program and the rules. When first
programming with the tablet, the obstacle was not how to program, but how to get
the commands to the programming environment. Though the supervisors mostly
observed the children not recognizing how to do it and so the supervisors explained
at the first sign of frustration.

“Oh, you have to drag.” (P6, unit 3)

“Where is this shown here?” (P3, unit 3)

“So like this?” (P9, unit 3)

“And where can you find the commands...” (P8, unit 3)

“You have to press there.” (P18, unit 3)

This may also be due to the fact that every child has handled a tablet before, so
they might have some experience of what to expect.
In addition, the rules explained in unit 1 are still followed regarding the program

always starting with the start program command and ending with the end program
command. Comparing programming to a game could have been beneficial in teach-
ing programming rules. Just like game instructions or rules, some programming
conventions must be followed, equivalent to simple programming syntax.

“But first you have to use start.” (P13, unit 3)

“You have to- you have to put the end there.” (P13, unit 3)

“Why is the start command missing?” (P18, unit 3)

“First start. First Start must go there.” (P18, unit 3)

“No, that, goal. The goal is missing. The end.” (P9, unit 3)

“You have to- you have to place the end there.” (P13, unit 3)

“There’s no end on there, that’s why it doesn’t work. Um...” (P18, unit 4)

“First start. (inaudible).” (P18, unit 4)

57

5. Results and Discussion

As a bonus, one group was enthusiastic about remembering the roles and chose
and assigned their roles before the explanation began..

“I am the compiler.” (P6, unit 3)

“I am a programmer, so I am the tablet.” (P3, unit 3)

“I am the compiler, compiler.” (P6, unit 3)

“Because I am the robot.” (P2, unit 3)

5.3.1. Conclusion to Is there a transfer of knowledge from
unplugged to block-based programming?

In summary, the children transferred what they learned from the previous unplugged
units to ScratchJr in terms of commands, how programming works, and rules.
This means that the intention of designing the unplugged programming with the

ulterior motive of switching the programming to ScratchJr worked as planned. Sim-
ilarly, studies have used unplugged programming as an introduction to programming
before block-based programming, see [4, 74, 85].
However, as discussed in section 5.2, children had their diculties with program-

ming and debugging during ScratchJr programming. They may have recognized the
similarities, but this did not help them when it came to more abstract programming
such as that done in unit 4 story programming. The children had the basic knowl-
edge, but to translate it from the top view and low level abstraction programming
to the ScratchJr side view and higher level abstraction programming, it needed a
little more introduction there.
Unplugged programming may prove to be a good entry point for young children

to learn the basics of programming concepts, rules, and commands before moving
on to other types of programming.

If other types of programming have similar features, basic programming knowl-
edge can be transferred to them.

5.4. Answer to What debugging strategies do
children use when none have been taught?

As discussed in section 5.2, the children were able to point out and debug errors
in their programs, all during unplugged and some during ScratchJr. In the study
by Klahr and Carver [44] they found that children did not have a problem with
debugging the error, but finding it. Here it was observed that the children developed
their own strategies for finding errors.

5.4.1. Unplugged Programming

Children may have performed better in unplugged programming and debugging, as
discussed in section 5.2. As a result, three debugging strategies have been identified.

58

5. Results and Discussion

Strategy 1: Pair Programming: In the section 5.2.1, already explained as a pro-
gramming behavior within the group, children also used it to their advantage as
a debugging strategy. In the groups, one child took the lead and did the active
programming by finding and placing the commands. The others helped by ask-
ing questions, finding commands, giving feedback, and observing the playing field
and the program. Through this group e↵ort, errors were quickly found and solved
through discussion and suggestions.
Within this strategy, a di↵erent strategy emerged, which was reported by Misirli

and Komis [50]: verbal debugging. The di↵erence here is that the child who does this
is one that does not actively program and is only pointing out the solution to the
one who is programming. The pair programming strategy was only possible because
the children worked collaboratively as a group.

Strategy 2: Simulation: As an other strategy children used mental simulation (see
section 5.2.5) to visualize the robot path of their program and thereby encounter
the error. In unit 1 children executed the program in their own person (full embod-
iment [74]) before then switching to the robot (low embodiment [74]) which might
have helped them mentally simulation the program and actions and thus finding the
error.
This strategy is comparable to the hand simulation [38]. However, it is natural

given, as the programming and execution is done by the children and not the robot.
However, by doing so children did gain comprehension of their program and this
may have helped them.

Strategy 3: Serial Search: This strategy is one that Klahr and Carver have
reported [44] and one that they have taught to the children in their study. Here, the
children naturally used it as they tested and ran their programs to find the error.
By executing it step-by-step, the children found the error when they encountered a
discrepancy between the path they expected and the path the robot took.

Bonus Strategy: Real-World Knowledge: This strategy is rather one that may
have helped them to have a better understanding of the programming and therefore
to have a better chance of finding a error. By designing the programming and
materials to be age-appropriate, the children were enabled to recognize similarities to
the real world and to project their previous knowledge and experience onto it. This
kept programming concepts at a low level of abstraction that they could understand
and combine with things they already understood.

5.4.2. ScratchJr Programming

During ScratchJr, children had their struggles with debugging, as they could see the
errors but found it dicult to debug them. As a result, the debugging part was less

59

5. Results and Discussion

frequent than with unplugged programming, and sometimes the errors were even left
alone.

Strategy 4: Symptom Debugging: This strategy is essentially the simple map-
ping strategy found by Katz and Anderson [38]. During testing, the children saw the
behavior of the ScratchJr characters and found the error by comparing it to their
expectation of what the characters should do instead. The children then proceed
to debug the error, sometimes by replacing or compensating it. Both are strategies
already reported by Ahn [4] and Nikolos et al. [56]. When they compensated the er-
ror, they tackled the symptom, but sometimes delayed the error, hence the strategy
name.

Bonus Strategy: Code Review This strategy unfolded after the programming was
finished and the groups presented their stories to everyone. During the presentation
of the story, the other group pointed out the wrong behavior of the characters
and errors, and sometimes suggested solutions when the presenting group had no
approach how to solve it.

5.4.3. Conclusion to What debugging strategies do children use
when none have been taught?

As they debugged in unplugged and ScratchJr, the children developed their own
strategies for finding and solving the errors. During the unplugged programming,
the children performed better in terms of debugging. This was also reported by
Ahn [4]. In addition, the children did not limit themselves to one strategy, but
developed and used several. Similar results were found in the studies of DeLiema et
al. [21] and Sipitakiat and Nusen [68].
One explanation for the fewer strategies identified in the ScratchJr debugging

is that the children did not spend as much time programming as in the unplugged
units. Additionally, the amount of debugging in ScratchJr was lower, which could
be due to children not understanding the programming as well as in unplugged.
To address this issue and possibly get more advanced strategies, even more pro-

grams with implemented errors could be integrated into unplugged units and also
introduced into ScratchJr units. Nikolos et al [56] also suggested this by having a
balance between programming and having finished programs with only debugging.

Without being taught, children can develop their own debugging strategies.

5.5. Answer to Are there di↵erences in debugging
between di↵erent age groups?

When designing the children’s programming course, three groups were divided by
grade level and one group was mixed. Since their ages are not that far apart,

60

5. Results and Discussion

the di↵erences are not that obvious. However, during debugging discussions, some
slight di↵erences are noticeable. Younger children tend to be more vague about
errors and solutions. They are more likely to use unspecific locative adverbs that
are unclear without visual context. In contrast, the slightly older children use more
often concrete language to describe the location of the error and in some cases
immediately add a solution.

Young children:

“From then on. But then he hits the wall.” (P2, unit 2)

“Um left. Forward, forward. Huh, this way.” (P7, unit 2)

“We should do it like this five times.” (P2, unit 2)

“Wait t-, let’s just leave it. (error is just left like that)” (P3, unit 3)

“Why does the ball do that?” (P3, unit 3)

“Maybe wait a while. This will go away for now.” (P2, unit 3)

“(exhale) We did something wrong. Now we can’t get any further here.” (P5, unit 4)

Older children:

“Oh, we just forgot one forwards.” (P13, unit 2)

“Look, ...w(?) jump over then, one, two, then you turn to there?!” (P17, unit 2)

“Huh? It has to rotate twelve times.” (P8, unit 3)

“And then it says right after that, there he is, although the frog says something before
that.” (P13, unit 3)

“That’s, that’s funny. He’s not using the others’. It starts with the... Wait, the lizard
shrinks first.” (P13, unit 4)

One reason for this could very well be the result of cognitive development, which
can change rapidly in young children [26, 27]. However, since the developmental
stage is not cut by age or grade, these di↵erences may not be clear.
Another di↵erence noted, not really related to debugging, is the di↵erence in

planning how to program some actions. Younger children are more likely to look for
the literal command action, where older children have a much better understanding
of this abstract programming and look for commands to just make it look like it.

Young children:

“But how can you magically move the ball? (wonder if there is this command)” (P7,
unit 3)

“Is there any magic here?” (P1, unit 3)

“Where is the kissing program?” (P3, unit 3)

“Um, how can you make the dragon breathe fire?” (P6, unit 4)

“On the corner. And we want to make it look like it’s evening? The cave has to be
in the first scene. It won’t work. It won’t work.” (P9, unit 4)

Older children:

“Yes, we can use him as a lord.” (P14, unit 4)

61

5. Results and Discussion

“(inhale, excited) Yes, stop! We just have to draw a person... and then something
on it, we don’t have to draw it ourselves! We just have to draw something on it like
dummies. Oh man.” (P14, unit 4)

“(reads) ‘And waited for Putin to discover him. Putin did not discover him.’ Um
and let’s just do it like this (inaudible)” (P18, unit 4)

Also, in unit 4, when writing the story for the other group, some older children
thought about when the other group would have to program it and how they would
do it, showing some planning skills and thinking ahead.

“So, he could be big, small, big, small, big, small. (disguised voice) Yesyesyesyes.”
(P14, unit 4)

“Yes, they have to paint it really stupid.” (P14, unit 4)

“No, he’s not invisible, he’s hiding. But on the screen, it looks like...” (P16, unit 4)

“No, maybe there is no such thing! We know... under the sea.” (P15, unit 4)

“There must be one in there too. The...” (P18, unit 4)

“They don’t know who that is. We have to do without him now, come on. Either we
would have put him in at the beginning or not now.” (P18, unit 4)

“They need lots of pictures, di↵erent backgrounds.” (P13, unit 4)

This was only noticed during ScratchJr programming. One explanation may be that
during unplugged programming, commands were introduced step-by-step, so children
knew every command they could and had to use. Another reason could be that
unplugged programming was more tangible and easier for children to understand, as
discussed earlier.

5.5.1. Conclusion to Are there di↵erences in debugging between
di↵erent age groups?

During debugging, there were some minor di↵erences in the language used by younger
and older children when addressing an error and its solution. Also during program-
ming, older children tended to be better at abstract story programming.
Both cases suggest that unplugged programming is a good introduction to pro-

gramming regardless of age, and that the introduction to ScratchJr should be han-
dled di↵erently based on the cognitive development of children.

Even when programming is age-appropriate, the type of programming can be
critical to children’s understanding of programming.

Unplugged programming may be more accessible to younger children.

5.6. Further Exploration

Programming Roles During unit 1 the three roles of robot, compiler and pro-
grammer were introduced as crucial for the “programming game”. For this unit,

62

5. Results and Discussion

the roles were decided with hidden drawing cards. After the first few tasks, the chil-
dren understood and remembered what these roles meant and what tasks they were
associated with. Then, during unit 2, the roles and associated tasks were recalled
and distributed independently within the children’s group.

“Here guys. I am the compiler.” (P6, unit 2)

“I want to be the compiler again.” (P1, unit 2)

“I announce.” (P11, unit 2)

“Come on, so I can place it.” (P6, unit 2)

“Yes, but I am the programmer.” (P17, unit 2)

“Soo, I’m controlling the robot again.... And you’re announcing again.” (P15, unit
2)

“Hn actually you are only a compiler and builder.” (P3, unit 2)

“That’s why I have to draw everything. Yoo-hoo!” (P4, unit 2)

“Hey [P4], I am supposed to do this! (paint)” (P5, unit 2)

“As a robot, you have to do the same thing as [P5].” (P3, unit 2)

The roles were treated with importance and obeyed in their tasks. With them,
children knew what they had to do during each part of the programming. Moreover,
in unplugged programming it showed the importance of a correct and functioning
program. Separating the one who reads the program from the one who plays the
robot might have prevented cheating, i.e. just saying the right way instead of reading
a correct program.
At the same time, the roles could have shown the children the “magic” behind a

computer which simply reads the program as it is, and could have given them some
insight into programming and computers, as it was introduced as “communicating
in another language with the robot”.

Audio Recording Device In each of the units, naturally, the children were clearly
aware that the audio recording device was present, and some of them interacted
with it during the tasks. Some just spoke into the device, sometimes personifying it
or using it as a prop.

“Hello?” (P17, unit 2)

“(interrupts) Can you understand yourself?”(P15, unit 2)

“Nana. Nana.” (P9, unit 2)

“Hello, stupid microphone. We can also do something funny again.” (P3, unit 3)

“Can you hear me, you, you little thiiiiingy? Hello? Can you hear me? Hello. Boo.”
(P6, unit 3)

“Hello! Hello! Hello! Hello! Hello, Hello Hello, Hello.” (P15, unit 3)

“No, really. Hello. Programming is a lot of fun. Andorn(?).” (P15, unit 3)

A few children asked what it was and why it was there during the unit. However,
it did not seem that they acted di↵erently or pretended to do anything for the
recording, except when talking to it.

63

5. Results and Discussion

Competition At the beginning of each unit it was stated that the groups were
not in competition with each other. Nevertheless, in every unit, except the first
one, some kind of competition or comparison was noted. Those instances were
sometimes comparing progress to their own group, just looking at what the other
group is doing, having the goal of doing something better than the other group, or
in unit 4 making the story extra complicated for the other group to program (cf.
section Debugging 5.2.4).

“They’re only just putting the crown on over there.” (P6, unit 2)

“The others are at the same.” (P4, unit 2)

“I’ll go and see what they’re doing.” (P17, unit 2)

“Ey, they have tunnels too.” (P6, unit 2)

“So done! We have won.” (P3, unit 2)

“We have already done this program.” (P15, unit 2)

“Come on, let’s demonstrate our strength.” (P1, unit 3)

“We are now making our strength, let’s demonstrate it to them.” (P1, unit 3)

“Our program is the best.” (P18, unit 3)

“Where are they? [...] Well, the others?” (P16, unit 3)

“Select reverse gear at the end. See if the other group is doing it right.” (P3, unit 4)

This competition was only noticed between groups, not within them, and may be
just a playful and natural competition between friends or classmates. However, it
may have motivated some to program better or faster.

Reading Along During the ScratchJr programming, when using the Say command
and playing the animation, some children synchronized or read the said text out loud.

“’Hello.’” (P4, unit 3)

“’Hello.’” (P11, unit 3)

“’Hello.’” (P12, unit 3)

“’Neigh an apple.’” (P8, unit 3)

“So, ’neigh an apple’ says the horse. Here’s an apple’ says the (inaudible). What
does yours look like?” P8, unit 3)

“’Ouch.’” (P3, unit 4)

“’Abracadabra.’” (P1, unit 4)

“’Oh no!’ Hehe.”(P1, unit 4)

This was text that they wrote themselves or had to write based on the story they
had to program. Compared to other things they had to read, such as the text of the
tasks, these were rarely read at all. Therefore, if there was something that needed
to be read by the children in order to understand a task, it could be done this way.

64

5. Results and Discussion

Feedback After the programming course in unit 4 was completed, feedback sheets
were distributed asking how each unit was enjoyed, what they liked most, what they
liked least, and if they would participate again. A total of 82.35% said they would
participate again. Of these, 17.65% said only programming on the tablet and 11.76%
said on the tablet but something else. In the open answer of the most liked thing in
the programming course most of the children (64.70%) answered that they liked the
programming with the tablet the most which is reflected in the answers how each
unit was enjoyed with the majority of positive answers for the unit 4 followed by
unit 3.
In addition, some of the children continue to stay after the end of the units to

program some more. Sometimes the remaining children formed a new group with
the other remaining children.
Based on both cases, it can be said that the children enjoyed the course and the

programming.

5.7. Limitations

There are limitations to this study. One is how the programming course was im-
plemented. Originally it was planned to have five units to have enough time for
introductions and learning before moving on to applying the knowledge. However,
due to time constraints, the course had to be held in only four units. Therefore,
after each unit, the next unit was slightly modified to fit the important lessons and
study objectives. Additionally, due to the short time, potential exploration time at
the end of each unit had to be skipped in most cases because the introduction of
the commands was more crucial.
As a result and as another limitation, the programming course took place only

once a week and each type of programming and tasks i.e. unplugged programming
on the big playing field and table and ScratchJr programming were present only
once in each unit. These long intervals and changes could have a↵ected the learning
of programming. This was tried to be limited with a revision of the last unit and a
repetition of a task at the beginning.
Another limiting factor is that the children volunteered for the programming

course and were free to skip units. So it often happened that someone was missing
for the unit or arrived later. This may have a↵ected the acquisition and transfer of
programming knowledge.
A possible other limitation is that most of the course planning, one of the super-

visors of the course, and most of the transcribing was done by me, which may have
a↵ected the analysis.

65

5. Results and Discussion

5.8. Lessons learned

Through observations, in hindsight and the analysis some things that can be im-
proved were revealed.

Units in General One of the modifications that should be made to the units is
the length of a unit which was identified through observation and feedback done
with the children at the end of the course. Both children and supervisors perceived
that 45 minutes was not enough time. Increasing the length of a unit to 60 minutes
should be within reason and allows enough time to plan exploitative programming
after the tasks are completed at the end.
In addition, as originally planned, at least five units should be conducted, two of

them dedicated to learning the programming, rules and for the step-by-step intro-
duction of the commands. This leaves the remaining units for the presentation of
the other types of programming, i.e. here unplugged and ScratchJr, with the basic
knowledge of the commands.

Unplugged Units In the unplugged unit, it was noticed that the tasks were partially
too easy, especially after the children were done with the step-by-step introduction of
the commands. The tasks could be designed to become progressively more dicult.
This may require children to use more problem-solving and come up with more or
di↵erent strategies.

ScratchJr Units As indicated in the discussion, the ScratchJr units were designed
with too much independence too early, making the switch to ScratchJr too abrupt.
Even if children remember the commands and functions, an introduction would be
beneficial. This could be done in the first unit with ScratchJr through prepared
ScratchJr programs where the goal for children is to recognize the commands in
the program and to fill in and complete programs. Then the tasks can become
increasingly independent and dicult. This ensures that children have a similar
step-by-step introduction to ScratchJr, but still need to recall previous programming
knowledge.
Also, the unit objective of programming a story is a lot to do in a short amount

of time. Instead, this could be split into two units, with one dedicated to planning
the story and exploring possibilities, and the other to programming and debugging.

Material The children had no diculty with the commands, not even the repeat
command, and came up with their own. Based on this, new commands could be
implemented that would make unplugged programming stand out from the ScratchJr
design model. This could be the adoption of other programming concepts such as
if else commands or the ability to create a custom with a blank command.
In addition, the way tasks are presented could be changed to digital as tablets are

already available. This allows tasks to be easily changed, replaced, or added.

66

5. Results and Discussion

Programming and Debugging Assessment As stated earlier in section 5.4, more
prepared programs with implemented errors could lead to more debugging and
strategies. More of them should be interspersed between other tasks. To increase
the e↵ectiveness of the programs with the implemented errors, they could be com-
pletely prepared, e.g. digitally or on cards, instead of being laid out by the children
first. This would allow them to concentrate on the debugging itself.
Prepared programs should also be introduced for ScratchJr. This could be done

by describing the desired animation that the characters should do, or by showing
a short video of the correct animation and letting the children debug the prepared
faulty programs. This will make the debugging more controlled and have a set goal
to achieve.

Screen Recordings on Tablets In light of the problems with screen recording
encountered in the study, it would be advisable to limit the recording time to indi-
vidual tasks or to keep it as short as possible. Another approach would be to film
the screens with a video camera set up to film the screen from top down.

67

6. Conclusion and Future Work

This thesis and research focused on children’s programming and debugging when
they were not taught strategies but had to develop their own. For this purpose, a
programming course using unplugged and ScratchJr programming was designed and
implemented with volunteer elementary school children over a period of four weeks.
By analyzing the transcripts of the audio recordings, it was found that the chil-

dren’s reactions to implemented errors did not di↵er from their own errors, and
that children came up with four di↵erent debugging strategies for unplugged and
ScratchJr programming. In addition, the children had no problem recognizing the
similarities between the two types of programming and were able to transfer their
knowledge of programming and commands. However, the method presented here
to switch to and teach ScratchJr was not suitable, so while the programming was
not hard for the children to recognize, the debugging was more dicult for the
children and it seems that they could not transfer their previous knowledge to the
ScratchJr debugging. Additionally, during debugging, some slight di↵erences were
found between the age ranges in terms of the language they use when encountering
and solving an error. Overall, it was found that the unplugged programming method
used here is appropriate and easily understood by children of this age group, so that
they can program and explore independently.
These results suggest that it is possible to encourage children to freely explore

programming concepts and even debugging if the programming and materials are
age appropriate. A beneficial way to learn programming is unplugged programming,
as it is less abstract and tangible, and o↵ers opportunities for children to explore
at their own pace and apply their previous knowledge to the real world. Same is
reported through other studies [13, 9, 14]. From there, children can take the basic
programming skills they have learned and apply them to other types of program-
ming, as long as they are similar.
Future work could test the hypotheses presented in this thesis. Further, testing

whether the roles have an impact on children’s perceptions of how computer pro-
gramming or robot programming works could bring new investigations. Moreover,
it may be interesting to introduce new programming related roles for children to
take and act on. In addition, research could be done to see if children can learn
and then recognize types of errors faster and if this would help them with unknown
errors.

68

7. Acknowledgments

I would like to thank professor Janet Siegmund and my supervisor Elisa Hartmann
for the opportunity and help to create and conduct the programming course for
children and for their insights and comments on the research and on this thesis.
I would also like to thank my husband Vincent Kühn for his encouragement and
support and my cats Nova and Juno for emotional comfort.

69

Bibliography

[1] Edith Ackermann. 2001. Piaget’s Constructivism, Papert’s Constructionism:
What’s the Di↵erence. Future of Learning Group Publication 5, 3 (2001), 438.

[2] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An Analysis of
Patterns of Debugging Among Novice Computer Science Students. In Proceed-
ings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. 84–88.

[3] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2007. The Impact of
Improving Debugging Skill on Programming Ability. Innovation in Teaching
and Learning in Information and Computer Sciences 6, 4 (2007), 72–87.

[4] Junghyun Ahn. 2020. Computational Thinking in Children: The Im-
pact of Emodiment on Debugging Practices in Programming. dissertation.
Columbia University. https://academiccommons.columbia.edu/doi/10.

7916/d8-k5ee-q864

[5] Alissa N Antle. 2009. Embodied Child Computer Interaction: Why Embodi-
ment Matters. Lifelong Interactions 16, 2 (2009), 27–30.

[6] Keijiro Araki, Zengo Furukawa, and Jingde Cheng. 1991. A General Framework
for Debugging. IEEE software 8, 3 (1991), 14–20.

[7] Barbara Arfé, Tullio Vardanega, and Lucia Ronconi. 2020. The E↵ects of Cod-
ing on Children’s Planning and Inhibition Skills. Computers & Education 148
(2020), 103807.

[8] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From
Scratch to “Real” Programming. ACM Transactions on Computing Education
(TOCE) 14, 4 (2015), 1–15.

[9] Kaan Bati. 2022. A Systematic Literature Review Regarding Computational
Thinking and Programming in Early Childhood Education. Education and
Information Technologies 27, 2 (2022), 2059–2082.

[10] Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Com-
puter Science Unplugged: School Students Doing Real Computing Without
Computers. The New Zealand Journal of Applied Computing and Information
Technology 13, 1 (2009), 20–29.

70

BIBLIOGRAPHY

[11] Marina Umaschi Bers. 2018. Coding and Computational Thinking in Early
Childhood: The Impact of Scratchjr in Europe. European Journal of STEM
Education 3, 3 (2018), 8.

[12] Marina Umaschi Bers. 2019. Coding as Another Language: A Pedagogical Ap-
proach for Teaching Computer Science in Early Childhood. Journal of Com-
puters in Education 6, 4 (2019), 499–528.

[13] Marina Umaschi Bers, Jessica Blake-West, Madhu Govind Kapoor, Tess Levin-
son, Emily Relkin, Apittha Unahalekhaka, and Zhanxia Yang. 2023. Coding as
Another Language: Research-Based Curriculum for Early Childhood Computer
Science. Early Childhood Research Quarterly 64 (2023), 394–404.

[14] Marina Umaschi Bers, Louise Flannery, Elizabeth R Kazako↵, and Amanda
Sullivan. 2014. Computational Thinking and Tinkering: Exploration of an
Early Childhood Robotics Curriculum. Computers & Education 72 (2014),
145–157.

[15] Imed Bouchrika. 2023. What Age Should a Child Get a Smartphone:
Pros and Cons of Early Phone Use. https://research.com/education/

what-age-should-a-child-get-a-smartphone

[16] John Byrne and Paula Prendeville. 2020. Does a Child’s Mathematical Lan-
guage Improve When They Engage in Cooperative Group Work in Mathemat-
ics? Education 3-13 48, 6 (2020), 627–641.

[17] Giuseppe Chiazzese, Marco Arrigo, Antonella Chifari, Violetta Lonati, and
Crispino Tosto. 2018. Exploring the E↵ect of a Robotics Laboratory on Com-
putational Thinking Skills in Primary School Children Using the Bebras Tasks.
In Proceedings of the Sixth International Conference on Technological Ecosys-
tems for Enhancing Multiculturality. 25–30.

[18] Pao-Nan Chou. 2020. Using Scratchjr to Foster Young Children’s Computa-
tional Thinking Competence: A Case Study in a Third-Grade Computer Class.
Journal of Educational Computing Research 58, 3 (2020), 570–595.

[19] Andy Clark. 2008. Supersizing the Mind: Embodiment, Action, and Cognitive
Extension. OUP USA.

[20] Nancy DeJarnette. 2012. America’s Children: Providing Early Exposure to
Stem (Science, Technology, Engineering and Math) Initiatives. Education 133,
1 (2012), 77–84.

[21] David DeLiema, Maggie Dahn, Virginia J Flood, Ana Asuncion, Dor Abraham-
son, Noel Enyedy, and Francis Steen. 2019. Debugging as a Context for Fos-
tering Reflection on Critical Thinking and Emotion. Deeper Learning, Dialogic
Learning, and Critical Thinking: Research-based Strategies for the Classroom.
Hrsg. von Emmanuel Manalo. New York: Routledge (2019), 209–228.

71

BIBLIOGRAPHY

[22] DevTech Research Group, Lifelong Kindergarten Group, Playful Invention
Company. 2014. ScratchJr. https://www.scratchjr.org

[23] Ryan Elder and Krishna Aradhna. 2014. Grasping the Grounded Nature of
Mental Simulation. The Inquisitive Mind 20, 4 (2014).

[24] K Anders Ericsson and Herbert A Simon. 1998. How to Study Thinking in
Everyday Life: Contrasting Think-Aloud Protocols With Descriptions and Ex-
planations of Thinking. Mind, Culture, and Activity 5, 3 (1998), 178–186.

[25] Georgios Fessakis, Evangelia Gouli, and Elisavet Mavroudi. 2013. Problem
Solving by 5–6 Years Old Kindergarten Children in a Computer Programming
Environment: A Case Study. Computers & Education 63 (2013), 87–97.

[26] Kurt W Fischer and Louise Silvern. 1985. Stages and Individual Di↵erences in
Cognitive Development. Annual Review of Psychology 36, 1 (1985), 613–648.

[27] Louise P Flannery, Brian Silverman, Elizabeth R Kazako↵, Marina Umaschi
Bers, Paula Bontá, and Mitchel Resnick. 2013. Designing Scratchjr: Support
for Early Childhood Learning Through Computer Programming. In Proceedings
of the 12th International Conference on Interaction Design and Children. 1–10.

[28] MuckRock Foundation. 2018. oTranscribe. https://otranscribe.com

[29] Neil Fraser, Quynh Neutron, Ellen Spertus, and Mark Friedman. 2012. Blockly.
https://developers.google.com/blockly. Accessed: 2023-08-20.

[30] Carl Gabbard. 2013. The Role of Mental Simulation in Embodied Cognition.
Early Child Development and Care 183, 5 (2013), 643–650.

[31] Tancicleide Carina Simões Gomes, Taciana Pontual Falcão, and Patŕıcia Cabral
de Azevedo Restelli Tedesco. 2018. Exploring an Approach Based on Digital
Games for Teaching Programming Concepts to Young Children. International
Journal of Child-Computer Interaction 16 (2018), 77–84.

[32] Leo Gugerty and Gary Olson. 1986. Debugging by Skilled and Novice Pro-
grammers. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 171–174.

[33] Jo E Hannay, Tore Dyb̊a, Erik Arisholm, and Dag IK Sjøberg. 2009. The Ef-
fectiveness of Pair Programming: A Meta-Analysis. Information and Software
Technology 51, 7 (2009), 1110–1122.

[34] Mia Heikkilä and Linda Mannila. 2018. Debugging in Programming as a Multi-
modal Practice in Early Childhood Education Settings. Multimodal Technolo-
gies and Interaction 2, 3 (2018), 42.

72

BIBLIOGRAPHY

[35] Thomas Hirsch and Birgit Hofer. 2021. What We Can Learn From How Pro-
grammers Debug Their Code. In 2021 IEEE/ACM 8th International Workshop
on Software Engineering Research and Industrial Practice (SER&IP). IEEE,
37–40.

[36] Michael S Horn, R Jordan Crouser, and Marina U Bers. 2012. Tangible Interac-
tion and Learning: The Case for a Hybrid Approach. Personal and Ubiquitous
Computing 16, 4 (2012), 379–389.

[37] Michael S Horn and Robert JK Jacob. 2007. Designing Tangible Programming
Languages for Classroom Use. In Proceedings of the 1st International Confer-
ence on Tangible and Embedded Interaction. 159–162.

[38] Irvin R Katz and John R Anderson. 1987. Debugging: An Analysis of Bug-
Location Strategies. Human-Computer Interaction 3, 4 (1987), 351–399.

[39] Elizabeth R Kazako↵ and Marina Umaschi Bers. 2014. Put Your Robot In, Put
Your Robot Out: Sequencing Through Programming Robots in Early Child-
hood. Journal of Educational Computing Research 50, 4 (2014), 553–573.

[40] Elizabeth R Kazako↵, Amanda Sullivan, and Marina U Bers. 2013. The E↵ect
of a Classroom-Based Intensive Robotics and Programming Workshop on Se-
quencing Ability in Early Childhood. Early Childhood Education Journal 41
(2013), 245–255.

[41] ChanMin Kim, Jiangmei Yuan, Lucas Vasconcelos, Minyoung Shin, and
Roger B Hill. 2018. Debugging During Block-Based Programming. Instruc-
tional Science 46 (2018), 767–787.

[42] KinderLab Robotics. 2014. KIBO Learning Robots in Action. https:

//kinderlabrobotics.com/kibo/in-action/

[43] Julian Kiverstein. 2012. The Meaning of Embodiment. Topics in Cognitive
Science 4, 4 (2012), 740–758.

[44] David Klahr and Sharon McCoy Carver. 1988. Cognitive Objectives in a Logo
Debugging Curriculum: Instruction, Learning, and Transfer. Cognitive psychol-
ogy 20, 3 (1988), 362–404.

[45] Nina Körber, Lisa Bailey, Luisa Greifenstein, Gordon Fraser, Barbara Sab-
itzer, and Marina Rottenhofer. 2020. An Experience of Introducing Primary
School Children to Programming Using Ozobots (Practical Report). In The
16th Workshop in Primary and Secondary Computing Education. 1–6.

[46] John Kounios and Mark Beeman. 2009. The Aha! Moment: The Cognitive Neu-
roscience of Insight. Current Directions in Psychological Science 18, 4 (2009),
210–216.

73

BIBLIOGRAPHY

[47] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero.
2019. Towards a Framework for Teaching Debugging. In Proceedings of the
Twenty-First Australasian Computing Education Conference. 79–86.

[48] Cecilia Martinez, Marcos J Gomez, and Luciana Benotti. 2015. A Compari-
son of Preschool and Elementary School Children Learning Computer Science
Concepts Through a Multilanguage Robot Programming Platform. In Proceed-
ings of the 2015 ACM Conference on Innovation and Technology in Computer
Science Education. 159–164.

[49] Sabine Martschinke, Susanne Palmer Parreira, and Ralf Romeike. 2021. Infor-
matische (Grund-) Bildung Schon in Der Primarstufe? Erste Ergebnisse Aus
Einer Evaluationsstudie. Technische Bildung im Sachunterricht der Grund-
schule (2021), 133.

[50] Anastasia Misirli and Vassilis Komis. 2023. Computational Thinking in Early
Childhood Education: The Impact of Programming a Tangible Robot on De-
veloping Debugging Knowledge. Early Childhood Research Quarterly 65 (2023),
139–158.

[51] MIT Media Lab. 2003. About Scratch. https://scratch.mit.edu/about

[52] Jaime Montemayor, Allison Druin, Allison Farber, Sante Simms, Wayne Chu-
raman, and Allison D’Amour. 2002. Physical Programming: Designing Tools
for Children to Create Physical Interactive Environments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 299–306.

[53] Luke Moors, Andrew Luxton-Reilly, and Paul Denny. 2018. Transitioning From
Block-Based to Text-Based Programming Languages. In 2018 International
Conference on Learning and Teaching in Computing and Engineering (LaT-
ICE). IEEE, 57–64.

[54] Nancy M Morris and William B Rouse. 1985. Review and Evaluation of Em-
pirical Research in Troubleshooting. Human factors 27, 5 (1985), 503–530.

[55] Katharina Müller. 2021. Was Bedeutet ”Backseat-Gaming”? Be-
deutung und Verwendung. https://www.netzwelt.de/abkuerzung/

186244-bedeutet-backseat-gaming-bedeutung-verwendung.html

[56] Dimitrios Nikolos, Anastasia Misirli, and Vassilis Komis. 2021. Children’s De-
bugging Processes and Strategies With a Simulated Robot: A Case Study. In
Educational Robotics International Conference. Springer, 64–74.

[57] Ozobot’s Team. 2012. Was ist Ozobot? https://ozobot-deutschland.de/

ozobot/

[58] Seymour Papert. 1980. Mindstorms” Children. Computers and powerful ideas
(1980).

74

BIBLIOGRAPHY

[59] Seymour Papert. 1987. Information Technology and Education: Computer
Criticism vs. Technocentric Thinking. Educational researcher 16, 1 (1987),
22–30.

[60] Priyanka Parekh and Elisabeth R Gee. 2019. Tinkering Alone and Together:
Tracking the Emergence of Children’s Projects in a Library Workshop. Learn-
ing, Culture and Social Interaction 22 (2019), 100313.

[61] Radia Perlman. 1976. Using Computer Technology to Provide a Creative Learn-
ing Environment for Preschool Children. (1976).

[62] Jean Piaget and Baerbel Inhelder. 1967. The Child’s Conception of Space. W.
W. NortonCo. 375–418 pages.

[63] Primo Toys. 2013. Meet Cubetto. https://www.primotoys.com

[64] JOCHEN Prümper, Dieter Zapf, Felix C Brodbeck, and Michael Frese. 1992.
Some Surprising Di↵erences Between Novice and Expert Errors in Computer-
ized Oce Work. Behaviour & Information Technology 11, 6 (1992), 319–328.

[65] Peter Rich and Brian Jones. [n. d.]. Connected Code: Why Children Need to
Learn Programming. Teachers College Record ([n. d.]).

[66] Andreas Schwill. 2001. Ab Wann Kann Man Mit Kindern Informatik Machen.
INFOS2001-9. GI-Fachtagung Informatik und SchuleGI-Edition (2001), 13–30.

[67] Deborah Silvis, Jody Clarke-Midura, Jessica Shumway, and Victor R Lee. 2021.
Objects to Debug With: How Young Children Resolve Errors With Tangible
Coding Toys. In Proceedings of the International Society of the Learning Sci-
ences (ISLS) annual meeting.

[68] Arnan Sipitakiat and Nusarin Nusen. 2012. Robo-Blocks: Designing Debugging
Abilities in a Tangible Programming System for Early Primary School Children.
In Proceedings of the 11th International Conference on Interaction Design and
Children. 98–105.

[69] Catherine E Snow and Marian Hoefnagel-Höhle. 1978. The Critical Period
for Language Acquisition: Evidence From Second Language Learning. Child
Development (1978), 1114–1128.

[70] Cynthia Solomon, Brian Harvey, Ken Kahn, Henry Lieberman, Mark L Miller,
Margaret Minsky, Artemis Papert, and Brian Silverman. 2020. History of Logo.
Proceedings of the ACM on Programming Languages 4, HOPL (2020), 1–66.

[71] Amanda Strawhacker and Marina U Bers. 2015. “I Want My Robot to Look For
Food”: Comparing Kindergartner’s Programming Comprehension Using Tangi-
ble, Graphic, and Hybrid User Interfaces. International Journal of Technology
and Design Education 25 (2015), 293–319.

75

BIBLIOGRAPHY

[72] Amanda Strawhacker and Marina Umaschi Bers. 2019. What They Learn When
They Learn Coding: Investigating Cognitive Domains and Computer Program-
ming Knowledge in Young Children. Educational Technology research and De-
velopment 67 (2019), 541–575.

[73] Felix Suessenbach, Eike Schröder, and Mathias Winde. 2023. Informatikun-
terricht: Deutschland Abgehängt in Europa. https://doi.org/10.5281/

zenodo.7515985

[74] Woonhee Sung, Junghyun Ahn, and John B Black. 2017. Introducing Compu-
tational Thinking to Young Learners: Practicing Computational Perspectives
Through Embodiment in Mathematics Education. Technology, Knowledge and
Learning 22 (2017), 443–463.

[75] Terrapin. 2017. Bee-Bot. https://www.betzold.de/prod/83721/

[76] Yune Tran. 2019. Computational Thinking Equity in Elementary Classrooms:
What Third-Grade Students Know and Can Do. Journal of Educational Com-
puting Research 57, 1 (2019), 3–31.

[77] Shirin Vossoughi and Bronwyn Bevan. 2014. Making and Tinkering: A Review
of the Literature. National Research Council Committee on Out of School Time
STEM 67 (2014), 1–55.

[78] David Weintrop. 2019. Block-Based Programming in Computer Science Edu-
cation. Commun. ACM 62, 8 (2019), 22–25.

[79] Mark Weiser. 1982. Programmers Use Slices When Debugging. Commun. ACM
25, 7 (1982), 446–452.

[80] Laurie Williams and Richard L Upchurch. 2001. In Support of Student Pair-
Programming. ACM Sigcse Bulletin 33, 1 (2001), 327–331.

[81] Jeannette M Wing. 2006. Computational Thinking. Commun. ACM 49, 3
(2006), 33–35.

[82] Adam Winsler and Jack Naglieri. 2003. Overt and Covert Verbal Problem-
Solving Strategies: Developmental Trends in Use, Awareness, and Relations
With Task Performance in Children Aged 5 to 17. Child development 74, 3
(2003), 659–678.

[83] Gary KW Wong and Shan Jiang. 2018. Computational Thinking Education for
Children: Algorithmic Thinking and Debugging. In 2018 IEEE International
Conference on Teaching, Assessment, and Learning for Engineering (TALE).
IEEE, 328–334.

76

BIBLIOGRAPHY

[84] Sarita Yardi and Amy Bruckman. 2007. What Is Computing? Bridging the
Gap Between Teenagers’ Perceptions and Graduate Students’ Experiences. In
Proceedings of the Third International Workshop on Computing Education Re-
search. 39–50.

[85] Goran Zaharija, Saša Mladenović, and Ivica Boljat. 2013. Introducing Basic
Programming Concepts to Elementary School Children. Procedia-Social and
Behavioral Sciences 106 (2013), 1576–1584.

77

A. File Share Code

A QR code to the folder containing each file. Alternatively see https://drive.

google.com/drive/folders/1z0DEMKZ504A5U0sTe9AF2yIYrYRrIpiL?usp=drive_link

78

B. ScratchJr Programmed Stories

Example of a prepared story and the matching template for the own stories.

Geschichtenblatt
Schreibe eine kurze Geschichte auf!

Es war einmal…

ein blauer Zauberer, der lebte am Strand. Eines Tages

besuchte ihn eine Fee. Die war sehr frech und warf einen

Apfel auf den Zauberer. Daraufhin verwandelte der

Zauberer die Fee in einen Hasen.

Welche Figuren spielen mit in der Geschichte? (mindestens 3 Figuren!)

Zauberer (☆), Fee (), Hase (♡)

Wo stehen die Figuren am Anfang?

☆ steht links

 steht rechts

♡ steht rechts, versteckt

Was machen die Figuren miteinander?

 geht zu ☆

 wirft Apfel auf ☆→ Apfel bewegt sich von Hand zu ☆ Kopf

☆ verzaubert → ☆ sagt Zauberspruch

 wird zu ♡→ versteckt sich und ♡ zeigt sich

79

B. ScratchJr Programmed Stories

Geschichtenblatt
Schreibe eine kurze Geschichte auf!

Es war einmal…

Welche Figuren spielen mit in der Geschichte? (mindestens 3 Figuren!)

Wo stehen die Figuren am Anfang?

Was machen die Figuren miteinander?

80

C. Feedback Sheet

Feedback sheet given after the programming course.

81

D. Percentage Calculation

The calculation of the percentages of programming and designing something in unit
4.

82

E. Original Quotes

From How do children react to programming errors,
and are there di↵erences between their own and
implemented errors?

“Fehler, Fehler, Fehler, Fehler, Fehler!” (P4)

”(hörbar einatmen) Wir haben ein Fehler gemacht! Wir haben ein Fehler gemacht!
Das darf nicht hier sein! Sondern hier muss das sein! (P4, unit 2)

”Gleich ein Fehler entdeckt.” (P4, unit 2)

”Ich glaub ich seh da schon ein Fehler drin.” (P6, unit 2)

”Die Krabbe ist am Platz geblieben HaHa.” (P12, unit 3)

Aha! Moment

“Stimmt! Wir brauchen noch eins nach oben hier.” (P1, unit 2)

“Ach, da fehlt eins.” (P8, unit 2)

“Oh, wir haben nur eins nach vorne vergessen.” (P13, unit 2)

“Oh meine... zweimal nur(?) groß machen. Hn.” (P2, unit 3)

“Da? Oh. ... Zielfahne.” (P11, unit 3)

“Hää? Der springt in die Luft und kommt immer... ah, der soll vom Boden starten
und springt dann aufs Bett.” (P18, unit 3)

“Nee, das ist sagen. Ah doch, doch (unhörbar).” (P11, unit 3)

“Doch. Ne warte, das stimmt, du hast recht. Wir brauchen doch sieben.” (P16, unit
3)

“Oorh wie, ah stimmt!” (P4, unit 4)

“Warum macht das? Oh das Baby machts.” (P4, unit 4)

“Warte nee, das hier können wir löschen, warte, ich muss gut ansetzen mhm. Mhm.
Mhmmm. Mhhmmm. Oh. Warte.” (P16, unit 4)

“Ah da geht’s ja gar nicht mehr. Danach...” (P13, unit 4)

“Ah, stimmt die verschwinden eigentlich gar nicht.” (P16, unit 4)

83

E. Original Quotes

Describe Behaviour

“Hier, laufen, dreimal geradeaus, Ball wird mitgenommen irgendwie. Und das ist
irgendwie so komisch. (P3, unit 3)

“Ey der ist ja noch nicht mal gesprungen!” (P1, unit 3)

“Hu? Der kommt aber gerade nicht aus der Hand geschossen.” (P7, unit 3)

“Die Krabbe ist am Platz geblieben HaHa.” (P12, unit 3)

“Der wird doch gar nicht kleiner?” (P8, unit 3)

“Und wo ist der Ball? Der wird doch gar nicht weggezaubert.” (P3, unit 4)

“He? Und hier ist noch die Fee da.” (P1, unit 4)

“Ja, aber es is halt blöd, weil der Zauberer, der also... Jetzt is das weg... Also, es
geht irgendwie nicht.” (P13, unit 4)

“Die Eidechse macht ja auch was, aber die kommt hier irgendwie nicht vor.” (P13,
unit 4)

“Aber da bewegt sich ja die Krone von selbst.” (P12, unit 4)

“Aber... ja, aber die sollen doch nicht kommen. Die sollen doch weg sein.” (P16,
unit 4)

Questioning

“Da ist ein Fehler, stopp! Stopp, stopp. Wieso zweimal nach oben?” (P2, unit 2)

“Hä, warte mal.. Geradeaus. Links?” (P2, unit 2)

“Guck mal, ...wes(?) überspringst dann, ein, zwei, dann drehst du dich nach da?!
(Betonung auf “da”)” (P17, unit 2)

“Hä, sollten wir hier nicht fünf Mal machen?” (P2, unit 2)

“Hä der ist doch schon groß?” (P1, unit 2)

“Eins nach o- noch eins nach- ja, nach eins, ne, hä? Hä?” (P2, unit 2)

“Das ist doch auch falsch, oder?” (P8, unit 2)

“Der wird doch gar nicht kleiner?” (P8, unit 3)

“Muss das Ding noch da rein? Oh es geht nicht.” (P7, unit 3)

“Hu? Der kommt aber gerade nicht aus der Hand geschossen.” (P7, unit 3)

“Warum hüpfen jetzt- hä? Warum hüpft er denn?” (P15, unit 3)

“Wo gibt’s diese Klammer? Wo ist die?” (P8, unit 3)

“Wieso fehlt da das Startzeichen?” (P18, unit 3)

“Hä wieso hat Putin jetzt gar nix gemacht?” (P18, unit 4)

“He? Und hier ist noch die Fee da.” (P1, unit 4)

84

E. Original Quotes

Logical Reasoning

“Ab dann. Aber dann prallt er ja gegen die Mauer.” (P2, unit 2)

“Doch, weil sonst prallen wir hier gegen die Mauer.” (P1, unit 2)

“Wenn er groß wird, dann donnert er gegen den Tunnel.” (P6, unit 2)

“Aber- aber wenn er sich hier wieder groß macht, dann donnert er gegen de’ Tunnel-
wand.” (P1, unit 2)

“Da ist a- das geht wirklich! (in der Tür vom Raum, vorzeigend) Das geht aber, in
der Tür kann man stehen.” (P3, unit 2)

“Neeeiiiin! Sonst knallt er ins Hindernis. Dann muss er das üb- Hindernis überspringen.”
(P15, unit 2)

“Na damit er über- durch die Tür gehen kann. Nnnnn hehehe. Weil die Tür ja gar
nicht steht.” (P5, unit 2)

“Und, aber das dritte ist schon wieder nicht richtig. Weil wenn er hier steht, dann,
wenn er hier steht... Eins, zwei, drei ist schon richtig. Aber hier muss er das Feld ja
überspringen, sonst knallt er ans Hindernis.” (P15, unit 2)

“Hier... eins, zwei, drei, vier, fünf und und dann einmal nach vorne geht nicht.”
(P9, unit 2)

“...weil wenn man ja dann 2 Mal oben geht dann verpasst man ja auch das Krone
aufsetzen.” (P4, unit 2)

“Gleich ein Fehler entdeckt. Weil wenn er sich groß macht, dann wird, dann habe
ich hier hingelegt, dass er gleich wieder normal wird. Aber dann ist er noch nicht
durch die Tür.” (P4, unit 2)

“Dann knallt er beim zweiten Schritt schon hier hin. Und da soll das Ende sein.
Hier.” (P15, unit 2)

“Wollt ich hier einfach 5 mal nach rechts sagen. ... Will 1, 2, 3, 4, 5, dann wär er
schon direkt hier. Dann noch 1 mal nach unten, einmal - einmal überspringen und
dann ist er schon im Ziel.” (P4, unit 2)

“Wir laufen auf dem Mond rum.” (P5, unit 3)

“Hää? Der springt in die Luft und kommt immer... ah, der soll vom Boden starten
und springt dann aufs Bett.” (P18, unit 3)

“Die Krabbe sitzt doch aber so schön, in unserem Basketballkorb.” (P4, unit 3)

“Aber das Huhn soll Zuschauer sein.” (P1, unit 3)

“Wieso geht er da so durch die Tür durch?” (P18, unit 3)

“Der läuft gegen die Wand hehehe.” (P15, unit 3)

“Hehehe. Nein, der Hund muss aus dem Fenster springen.” (P14, unit 3)

Reaction to Given Bugged Program

“Hä? Nein es geht ja gar nicht weiter.” (P4, unit 2)

“Was wollen die hier? Hehe.” (P17, unit 2)

85

E. Original Quotes

“Warte... Überspringen, eins, zwei... hääh... Ich glaube eher, der kommt nicht ins
Ziel. Schon hier hängt er ab. Guck! Eins, zwei, also so überspringen. Dann kommt
er zweimal nach vorn. Dann geht er einmal nach da und soll fünfmal in die Richtung
laufen. Geht aber nicht! Danach dreht er sich so und dann soll er nochmal drei
Felder nach vorne.” (P15, unit 2)

“Aber die haben gesagt wir sollen ausprobieren ob es funktioniert! [...] Also es kann
ja sein, dass es nicht funktioniert. [...] Nein, ähm, da stand - das stand doch nur,
dass ähm ausprobieren sollen ob es funktioniert!” (P5, unit 2)

“Und es funktioniert nicht!” (P4, unit 2)

“Das dürfen nicht. Wir müssen das da nach machen!” (P3, unit 2)

“Das kann man aber auch machen.” (P4, unit 2)

“Ho↵entlich funktioniert das Pro - Programm, sonst müssen wir ein eigenes legen.”
(P5, unit 2)

“Ich glaube eher, der kommt nicht ins

Ziel. Schon hier hängt er ab. Guck!” (P15, unit 2)

Problems Due to the Tablet

“Das Tablet will nicht, wie wir wollen.” (P3, unit 3)

“Ey was du kannst auch wegradieren?” (P4, unit 3)

“Wie löscht man die Dinger eigentlich?” (P7, unit 3)

“Daaann, gibts hier einen Radiogummi?” (P13, unit 3)

“Geht ja nicht! Was hast dus?” (P15, unit 3)

“Wo sind wir jetzt gelandet? Hilfe!” (P3, unit 4)

“Und wie kann man die Stempel wieder löschen?” (P6, unit 4)

“Das müssen wir löschen. Wie kann man das löschen?” (P13, unit 4)

“(flüstert) Sooo. (Wischgeräusch und plötzlich reagieren alle ganz erschrocken)... Oh
nein, die Schere war doch an!” (P10, unit 4)

“Erstmal müssen wir den doch benennen. Ah ne kann man nicht.” (P11, unit 4)

“Hehe und den kann ich nicht löschen. Scheiße.” (P16, unit 4)

“Hehe. Das Spiel ist doof. Tablets wollen nicht so viel, wie wir wollen.” (P3, unit 3)

“Hä wieso kann man das dahinter nicht löschen?” (P18, unit 3)

“K wo ist hier ein K? Orrrh ey, ich hasse Tastatur!” (P4, unit 4)

“Ich finde aber das Ausrufezeichen nicht. Eyy.” (P4, unit 4)

“Hä wieso malt es nicht mehr?” (P16, unit 3)

“Ja wir wollen.. wir sollen hier den Hintergrund ändern, aber der ändert sich nicht.”
(P17, unit 4)

86

E. Original Quotes

From How does programming and debugging
compare in unplugged and block-based programming?

Pair Programming

“Könnt ihr mir mal eins nach unten geben?” (P6, unit 2)

“Gibt es etwa nicht mehr(?)?” (P4, unit 2)

“Springen? Ne. Ich weiß nicht mehr.” (P5, unit 2)

“Hä, er kann die doch auch auflassen, oder?” (P8, unit 2)

“Nach oben, wo ist hier nach oben?” (P4, unit 2)

“Okay wollen wir nicht lieber, dass der dann nochmal nach unten geht?” (P1, unit
3)

“Dann... was kommt jetzt?” (P11, unit 3)

“Drei mal geradeaus, oder?” (P13, unit 3)

“Hallo sagen. Wo war das sprechen?” (P9, unit 3)

“Jetzt das Ende und das- dieses Ende?” (P15, unit 3)

“Und dann brauchen wir doch noch einen Zauberer. Oder?” (P2, unit 4)

“Was brauchen wir noch?” (P4, unit 4)

“Gut, also, was macht der Frosch?” (P4, unit 4)

“Wie viel Mal der (Kleinere?)?” (P8, unit 4)

“Und da muss noch ein größer werden Zeichen.” (P6, unit 2)

“Wir brauchen 1 Mal rechts und 2 Mal dieses Orangene.” (P4, unit 2)

“So also hier muss eine 2 rein...” (P4, unit 2)

“Warte. Ne, das war schon so richtig, wie du es gelegt hast. So. Und dann nach
geradeaus.” (P11, unit 2)

“Das brauchen wir! Das brauchen wir! das brauchen wir!” (P17, unit 2)

“Schiebe das Rote doch mal dahin.” (P3, unit 3)

“So. Wir brauchen die noch in blau, wir brauchen die in blau.” (P12, unit 3)

“So. Und jetzt müssen wir noch die Krabbe machen.” (P12, unit 3)

“Das ist glaube ich auf dem hier. Ja. Darf ich? Jetzt könnt ihr machen.” (P9, unit
3)

“Jetzt du. Und da fünf raufmachen.” (P8, unit 3)

“Schreib einfach noch ne 1.” (P18, unit 3)

“Wir müssen noch schnell auf den roten Zauberer machen.” (P13, unit 4)

“Also wir müssen ein Eskimo. (ausatmen) Ich weiß, wie du löschst. Du musst
nochmal zurück.” (P18, unit 4)

87

E. Original Quotes

“Brauchst du doch gar nicht weil du doch da in der Tür stehst.” (P18, unit 2)

“Äh, das brauchen wir gar nicht.” (P15, unit 2)

“Ne der muss sich ja erstmal drehen. Schlaumeier.” (P18, unit 2)

“Warte. Ne, das war schon so richtig, wie du es gelegt hast. So.” (P11, unit 2)

“Da steht’s. Sind nur die blauen.” (P3, unit 3)

“Nein das braucht man nicht!” (P13, unit 3)

“Du meinst die Klammer.” (P7, unit 3)

“Für das Huhn müssen wir zuerst das Anfang.” (P15, unit 3)

“Hä hee? Aber das ist doch ein grüner Brief und kein gelber.” (P14, unit 3)

“Warum hast du eigentlich jetzt zwei Babys gemacht?” (P4, unit 4)

“Ach, [P8]. Uns fällt grad ein, wir ham doch, nein, da kommt doch kein...” (P13,
unit 4)

“Okay, hier machen wir ein, och ich mach direkt 3 wir brauchen hier 3.” (P11, unit
4)

“Guck mal, wir sind- Guck mal. Hier ist der Start. Dann nach oben. Krone aufset-
zen.” (P1, unit 2)

“Ähm, muss da nicht noch einmal nach oben. Weil guck mal...” (P2, unit 2)

“Auf der Stelle hüpfen... Weil, das Feld überspringen ist ja dieses.” (P15, unit 2)

“Ja, aber guck, hier so eins, zwei. Und hier muss man eins, zwei, drei.” (P15, unit
2)

(P3, P6: beiden anderen, die nicht programmieren zählen die gesetzten Befehle laut
mit) (unit 3)

“Als erstes muss er ja kleiner werden.” (P1, unit 4)

“Genau. Aber Schneckentempo ist noch nicht. Schaut mal, wenn ihr sie noch klickt,
werden sie noch schneller.” (P3, unit 4)

“Nein hier müssen wir die! Da hin. Da, nein.” (P14, unit 4)

“Erstmal den Start...” (P2, unit 3)

“So, und jetzt zweimal nach oben. Da steht’s zweimal nach- darauf springen.” (P3,
unit 3)

“Als erstes brauchen wir einen Start.” (P4, unit 3)

“So jetzt zwei mal nach oben.” (P4, unit 3)

“Da muss eine 1.” (P7, unit 3)

“Aber warte mal kurz hier grün.” (P12, unit 3)

“Als Endes müssen wir’s Schloss machen.” (P11, unit 4)

“Stopp, Stopp, stopp. Eiswüste müssen wir jetzt (unhörbar).” (P14, unit 4)

88

E. Original Quotes

Thinking Aloud

“(leise) Zwei (unhörbar). (lauter) Zwei nach.” (P2, unit 2)

“Nach.. das.. Dann... das...” (P8, unit 2)

“Ähh, wir brauchn ra... nee, warte mal kurz. Klein machen... ja. Geradeaus...”
(P13, unit 2)

“Nein warte er kann... ah ja stimmt... Da muss er sich...” (P17, unit 2) “Ups,
zuerst muss das da... Das muss da. Oder?... Nee.” (P15, unit 2)

“Zwei Schritte zzz nach. Zwei Schritte naaaach reecht... nein, links... Und rechts...
Dann...mach dich ganz bitte ganz klein.” (P14, unit 2)

“4 nach... Also erst mal... Start.” (P2, unit 3)

“Dann... Warte, wir mach- wir machen das mal zusammen. Viiiier.” (P6, unit 3)

“Muss das Ding noch da rein? Oh es geht nicht.” (P7, unit 3)

“Erstmal brauchen wir das...” (P4, unit 3)

“Ähm... So. Und da-Ne. Ja und dann nochmal sprechen. Sprechblase.” (P12,
unit 3)

“(flüstert) Das (unhörbar)” (P8, unit 3)

“(leise) Springen.” (P8, unit 3)

“Das- und jetzt äh äh äh...” (P14, unit 3)

“Sooo. Danaaaach... geht das 6 mal...” (P15, unit 3)

“Ahhh... Hmmhmm... Das hier is erstmal das. Das is schon richtig. Das is das...
So, jetzt das... zwei nach (unhörbar), das is ja schon... Und jetzt Ende.” (P16, unit
3)

“Ah, Tre↵en... Hmm... Zwei hoooch... So, zwei hooch. Ähm... Mensch.” (P16, unit
3)

“1, 2, 3, 4, 5, 6, 7, 8, 9, 10, (beginnt zu flüstern) 11, 12, 13, 14, 15, 16, 17... 17
Kästchen.” (P16, unit 3)

“Ääähm... hmhmhmhhhmmmm... puuuhhh... so... jetzt kommt das Menschen.”
(P16, unit 3)

“Soo. Nee, eins größer. F↵↵f, hm, hm, größer machen... (Unhörbar)... Mhm, mhm,
mhm, mhm... mhm, mhm, mhm... mhm, mhm, mhmmmmm... nee, da kann keiner
drauf sitzen. F↵↵... Perfekt, und jetzt muss das noch weg, so. Und jetzt guck ich’s
mir noch einmal an, oder warte mal... Anfang...” (P16, unit 3)

Testing

“Können wir erstmal durchtesten, wie das dann so läuft?” (P3, unit 2)

“Lass mich kurz gucken. (will testen)” (P17, unit 2)

“Das können wir ja ganz leicht selber testen.” (P17, unit 2)

“So und jetzt testen wir mal.” (P3, unit 3)

“So, und jetzt testen. (P3, unit 3)

“Wir müssen erst mal gucken, ob es geht.” (P3, unit 3)

89

E. Original Quotes

“Das ist (unhörbar), wir probieren es einfach mal aus.” (P1, unit 3)

“Nee, lass erstmal starten.” (P15, unit 3)

“Ah ja hier haben wir auch schon. Wir müssen die Geschichte doch einmal durchge-
hen!” (P9, unit 4)

“Los und jetzt lass das Programm mal endlich laufen.” (P15, unit 4)

“Und jetzt testen wir es nochmal. Also erstmal das hier weg.” (P16, unit 4)

Debugging

“Oh jetzt haben wir ein Problem. Vorwärts springen nicht rückwärts springen.” (P3,
unit 2)

“Wir haben ein Fehler gemacht! Das darf nicht hier sein! Sondern hier muss das
sein!” (P4, unit 2)

“Da fehlt ein geradeaus.” (P9, unit 2)

“Und das hattet ihr nämlich falsch. Muss entweder- da muss ein geradeaus hin.”
(P16, unit 2)

“Aber da müssen wir uns doch groß machen.” (P14, unit 2)

“Weil hier ist ja schon das Problem. Er will ja nach da.” (P4, unit 2)

“Eine Drehung nach reeeechtss, ne nach links.” (P5, unit 2)

“Uund... und noch eins nach vorne.” (P8, unit 2)

“Mmh... Dann müssen wir aber jetzt hier ein bisschen zur Seite.” (P15, unit 2)

“Alsooo... ich würde sagen, zweimal überspringen.” (P15, unit 2)

“Wir meh - wir nehmen einfach das hier...” (P4, unit 2)

“Warte tei-, lassen wir es einfach. (fehler wird einfach so gelassen)” (P3, unit 3)

“Ähh das Stopp fehlt. Und wir müssen es langsam abspielen.” (P7, unit 3)

“Nein, das, Ziel. Das Ziel fehlt. Das Ende.” (P9, unit 3)

“Du musst- du musst das zu Ende ran machen.” (P13, unit 3)

“Dann muss die noch einen Schritt weitergehen.” (P16, unit 3)

“Wir haben den Abschluss vergessen.” (P2, unit 4)

“Das Ziel war nicht da.” (P4, unit 4)

“Das is, das is komisch. Der nimmt jetzt nicht das von den anderen. Das fängt ja
bei der... Warte, die Eidechse schrumpft erst mal.” (P13, unit 4)

“Guck da stehen dauernd dieses. Verstehst du, deswegen verschwinden die ja!” (P15,
unit 4)

“Nee, Szene wechseln kommt da ran.” (P18, unit 4)

“Ja, aber wieso geht das nicht drauf?” (P3, unit 3)

“Nee, wo muss ich das hinmachen?” (P16, unit 3)

“Was? Was muss ich jetzt machen?” (P8, unit 3)

“Hier... Maaaan, können Sie mal ganz uns mal ganz kurz helfen?” (P13, unit 4)

90

E. Original Quotes

“Wie rennt man aufs andere Bild? Wie kann man das wechseln?” (P8, unit 4)

“Fertig... Okay! Start... Ach neeee, es ergibt kein Siiinnnnn! Äääh... (meldet sich
für Hilfe)” (P13, unit 4)

“Oh. Warte. Oh, oh ja jetzt. Warte. Aufs Weiße und ah nee da kann man was
beschriften. Keine Ahnung, warte kurz. (meldet sich für Hilfe)” (P11, unit 4)

“Ähm, wie kann man machen, dass der Drache Feuer speit?” (P6, unit 4)

“Wir müssen nochmal fragen. [...] Wir wollen, dass der nach diesem Nordländer,
weil der sich ja versteckt, dann so ruft ’Zeig dich’, aber jetzt gehen wir nochmal auf
Putin und da...?” (P18, unit 4)

“Ja wir wollen.. wir sollen hier den Hintergrund ändern, aber der ändert sich nicht?”
(P17, unit 4)

“Wollen wirs den schwer mach-” (P1, unit 4)

“Das wird schwer schon.” (P3, unit 4)

“Wir machen das für die extra schwer.” (P14, unit 4)

“Bei der Geschichte das kann nämlich ganz schön schwer werden.” (P16, unit 4)

“Wir machen eine schwere Geschichte für die.” (P13, unit 4)

“P↵h (ausatment) Die haben sich ne voll blöde Geschichte gesucht. Bei uns war die
ja noch ok.” (P9, unit 4)

“Eure Geschichte ist eben ein bisschen schwierig.” (P15, unit 4)

“Eure Geschichten so schwer (unhörbar)” (P17, unit 4)

“Eure war auch so komisch schwer.” (P18, unit 4)

“Da gibt es gar keine Höhle. Die haben sich was voll schweres für uns ausgesucht.
Das Können wir gar nicht machen.” (P9, unit 4)

“Aber wie kann man denn den Ball zaubern? (sich fragen ob es diesen Befehl gibt)”
(P7, unit 3)

“Geht hier irgendwo zaubern?” (P1, unit 3)

“Wo ist das Programm Küssen?” (P3, unit 3)

“Ähm, wie kann man machen, dass der Drache Feuer speit?” (P6, unit 3)

“Da mit dem hier, guck mal wenn ihr diese Befehle einbaut, äh m, wartet mal, wir
gehen auf zurück und das, dann nehmt ihr den Befehl.” (P8, unit 4)

“Mach das mal weg. Mach weg. Und dann... [...] Den Befehl.” (P8, unit 4)

“Dann geht ihr, nehmt ihr den Befehl und das weg. Und nehmt das.” (P8, unit 4)

“Da mit dem hier, guck mal. Wenn man diese Befehle einbaut... ääähm... wartet
mal, wir gehen mal zurück auf das, dann nehmen den, den Befehl...” (P13, unit 4)

“Na ja, sie haben halt. Ich glaub sie haben vergessen das hier einzubauen. Und dann
ging das nicht.” (P8, unit 4)

“Das Ziel war nicht da.” (P4, unit 4)

“Naja, also wir haben halt... Also wir haben vergessen, das hier einzubauen.” (P13,
unit 4)

91

E. Original Quotes

Mental Simulation and Embodiment

“Wir müssen ja nach oben. Und dann so und dann (leise, überredet) so und so und
untendurch und so...” (P1, unit 2)

“Oder so hier. Soooo, soooo, so, so und so.” (P8, unit 2)

“Eins, hm hm hopp und dann hn hn.” (P4, unit 2)

“Einmal vor, dann Feld überspring ding dong ding.” (P3, unit 2)

“Dann da stehen würd ich mich ja so drehen.” (P8, unit 2)

“Nee, nee, nee. Wop, wop. Der ist dann jaa hiiier. Also, müssen wir jetzt hier hin
machen. Weil der ist ja hier.” (P13, unit 2)

“Ähmmm, hm hm hm hm hm hm hmhm.” (P16, unit 2)

“Und da eins, zwei, drei, vier, fünf, das ist richtig.” (P15, unit 2)

“Die macht- die macht eher gerade so. (vormachen)” (P3, unit 3)

“Döhh.” (P4, unit 3)

“Düb, düb, döööh. (Geräusche)” (P1, unit 3)

“(macht Pop-Geräusche)” (P5, unit 3)

“Düd. (Geräusch)” (P9, unit 3)

“Düdüdüdüdü.” (P18, unit 3)

“Düdüdü.” (P14, unit 3)

“Ppp. (Geräusch)” (P17, unit 4)

“Düd.” (P12, unit 4)

Backseat-Programming

“(flüstert) Du musst da drauf.” (P2, unit 3)

“Und jetzt aufs Rote drücken.” (P3, unit 3)

“Hier hat man die Funktionsliste. Du musst erst mal hier drücken jetzt. Und jetzt
hast du hier die Funktionsliste.” (P3, unit 3)

“Da musst du das da machen.” (P5, unit 3)

“Da muss man auf orange, auf orange!” (P1, unit 3)

“Jetzt du. Und da fünf raufmachen.” (P8, unit 3)

“Nein, das musst du zw-.” (P14, unit 3)

“Da musst du 11 runter, da musst du 11 drunter.” (P18, unit 3)

“Los jetzt mach!” (P4, unit 4)

“Und jetzt musst du noch die hier programmieren.” (P15, unit 4)

92

E. Original Quotes

Distraction by the Tablet

“(nimmt Aufnahme auf) Hallo (unhörbar). Wie geht’s? Wie steht’s?” (P3, unit 3)

“Und hier kannst du sogar malen, deinen eigenen Hintergrund.” (P3, unit 3)

“Hehehe. Können wir jetzt endlich den Zauberer anmalen?” (P7, unit 3)

“Und den Bauch mache ich in rot. Den Hut mach ich in blau.” (P11, unit 3)

“Aber die Katze können wir doch auch verändern!” (P9, unit 3)

“Wollen wir Unterwasser nehmen, oder Urwald?” (P15, unit 3)

“Müssen wir hier! Da können wir malen.” (P3, unit 4)

“Warte, den Drache müssen wir mal mit Farbe...” (P6, unit 4)

“Wir nehmen das Pferd. Das wir dann verändern.” (P10, unit 4)

“Hier müssen wir Emila nochmal bemalen. Grün.” (P9, unit 4)

“Doch, das ist schön... Ja, oder das? Und die Punkte?... Was is?... Ja, so.” (P13,
unit 4)

“Der Ball bewegt sich ja auch. Die Katze muss es ja machen.” (P3, unit 3)

“Der Eskimo- der Eskimo sagt Hallo zu dem Pinguin. Wo geht die Hallo-Taste?”
(P1, unit 4)

“Wir müssen nochmal fragen.” (P18, unit 4)

“Wie kann man denn dabei die Hintergründe wechseln?” (P10, unit 4)

“Warte, ich will jetzt den Tic hier reinkriegen. Wie krieg ich das hin?” (P17, unit
4)

“Das müssen wir löschen. Wie kann man das löschen?” (P13, unit 4)

Other Interesting Things

“Eins, zwei, drei und!” (P3, unit 2)

“Wollt ich hier einfach 5 mal nach rechts sagen. ... Will 1, 2, 3, 4, 5, dann wär er
schon direkt hier.” (P4, unit 2)

“(leise) Eins, zwei, drei.” (P9, unit 2)

“Fünf. Eins, zwei, drei, vier, fünf.” (P8, unit 2)

“Eine eins, eins, zwei, drei, vier, fünf, sechs. (Setzt mit der Figur) Eins, zwei, drei,
vier, fünf, sechs. Okay. Perfekt.” (P12, unit 2)

“Eins, zwei, dreimal musst du nach vorne.” (P15, unit 2)

“Ja, aber es wär doch viel einfacher., wenn er (tippt auf das Spielfeld) eins, zwei...
drei, vier, fünf... das wär doch einfacher.” (P14, unit 2)

“Baaatsch... Eins, zwei, drei. Also nur drei.” (P15, unit 2)

“Jetzt dreht er hier. Und da eins, zwei, drei, vier, fünf, das ist richtig. Das können
wir auch abbauen. Uund... fünf.” (P15, unit 2)

“Dann ma dann machen wir lieber das Wiederholungszeichen... Eins, zwei, drei,
vier, fünf, sechs mal...” (P15, unit 2)

93

E. Original Quotes

“220 mal nach rechts drehen.” (P4, unit 3)

“Ja das machen wir in einer 55 rein. Soll das (unhörbar) das Ding soll 55 mal
machen.” (P7, unit 3)

“Wie viel mal wollen wir die Schleife nehmen? 18 mal?” (P7, unit 3)

“150(?) mal, ne 100 mal nach oben!” (P7, unit 3)

“99.. 10 mal reicht dann nach oben. Da reicht 10 mal nach oben.” (P7, unit 3)

“..machen wir bis er aus dem Bild ist. Das sind ungefähr.. machen wir einfach mal...
11.” (P8, unit 3)

“Da schreiben wir eine Einhundert rein!” (P14, unit 3)

“Hun- schreib da hundertachtzig hin und dann wird das gehen.” (P18, unit 3)

“Dann schreiben wir da 66 rein.” (P18, unit 3)

“Nein, dann schreiben wir 90. Das ist (unhörbar)” (P14, unit 3)

“Also erstmal Flagge” (P3, unit 2)

“Baby machen.” (P6, unit 2)

“[...] Schneckentempo.” (P3, unit 2)

“So, hier ist das Haus.” (P12, unit 2)

“Und jetzt die Klammer wieder zu.” (P11, unit 2)

“[...] Mehrfach-Ding-Befehl ausführen oder hinlegen.” (P3, unit 2)

“Nein der Roboter hat sich verwandelt. Verwandelkarte.” (P17, unit 2)

“Da ist da so ein TnT drauf, wenn man das macht, ähm, sind alle Hindernisse weg
für(?) den Roboter.” (P16, unit 2)

“Oder es gibt auch fliegen.” (P17, unit 2)

“[...] eine Zeitreise machen bis hierhin?” (P6, unit 2)

“Gibts hier auch ein Türö↵ner?” (P6, unit 2)

“Gibt es hier irgendn best- bestimmtes Zeichen um durch die Tür zu gehen?” (P4,
unit 2)

“Wo ist die alle Lösche-Taste?” (P3, unit 3)

“Hahaha! Wir nehmen lieber das da. Löschen. Wo ist der Papierkorb?” (P3, unit
3)

“Warte, hier gibt es doch irgendwo eine Löschtaste, oder? Nein, zurück. Wo ist hier
Löschtaste?” (P3, unit 3)

“Gibt es auch ’n Radiergummi?” (P16, unit 3)

“Gibt es bei euch auch diiiese Taste?” (P16, unit 4)

“Gibts hier ein Radiergummi oder sowas?” (P4, unit 4)

94

E. Original Quotes

From Is there a transfer of knowledge from
unplugged to block-based programming?

“Ja, das ist ja leicht. Eins geradeaus draufspringen und dann zu Ende.” (P3, unit 3)

“Ähm er rennt,... er sp... [...] Oder hoch? Oder springt. Hoch, ich glaub hoch.”
(P11, unit 3)

“Er geht zweimal geradeaus. [...]]Hoch, dann dreht er sich 12 mal, dann geht er
zweimal nach unten, dann rennt er wieder...” (P12, unit 3)

“Zwei mal (unhörbar) P13: Zwei mal...” (P7, unit 3)

“Die rennt zwei Schritte geradeaus, dreht sich dann zwölf Mal, nach rechts, geht zwei
Schritte zurück, joggt, und springt zwei Mal und dann is Ende.” (P16, unit 3)

“Zweimal nach oben...äääh....Zwölfmal drehen?! (verwirrt) ...Zweimal nach unten.”
(P4, unit 3)

“Geht geradeaus. Also sechs mal geradeaus, dann sagt es hallo ähm dann...” (P13,
unit 3)

“Hallo. Dann schickt es einen Brief und dann gehts.” (P8, unit 3)

“Und zweimal schrumpfen.” (P4, unit 3)

“Hä wir haben doch schon Schneckentempo gemacht, [P3].” (P2, unit 3)

“Das ist der Roboter!” (P6, unit 3)

“Moment, wir müssen irgendwie Befehle geben... Also guck hier.” (P15, unit 3)

“Sechs 6 mal geradeaus. Nach da. Nein!” (P9, unit 3)

“Äh, Ziel, 5 gradeaus, über-springt zweimal und dann aufs Ziel.” (P11, unit 3)

“Also ich fang.. erst mal... Wo ist die Zielfahne da?” (P9, unit 3)

“Und 5. Also jetzt mach ich zweimal überspringen.” (P9, unit 3)

“Erstmal die Stadtflagge. So...” (P16, unit 3)

“Schneller werden. Wo ist schneller werden?” (P6, unit 3)

“Man läuft erstmal wie Sonic.” (P4, unit 3)

“Ach, du musst ziehen.” (P6, unit 3)

“Wo ist denn hier angezeigt?” (P3, unit 3)

“Also so?” (P9, unit 3)

“Und wo kann man die jetzt die Befehle...” (P8, unit 3)

“Da muss man ja draufdrücken.” (P18, unit 3)

“Aber erstmal muss man Start nehmen.” (P13, unit 3)

“Du musst- du musst das zu Ende ran machen.” (P13, unit 3)

“Wieso fehlt da das Startzeichen?” (P18, unit 3)

“Erstmal starten. Erstmal Start muss da hin.” (P18, unit 3)

“Nein, das, Ziel. Das Ziel fehlt. Das Ende.” (P9, unit 3)

“Du musst- du musst das zu Ende ran machen.” (P13, unit 3)

“Da ist kein Ende dran, deswegen geht’s nicht. Ähm...” (P18, unit 4)

“Erst mal Start. (unhörbar).” (P18, unit 4)

95

E. Original Quotes

“Ich bin Compiler.” (P6, unit 3)

“Ich bin Programmierer, da bin ich Tablet.” (P3, unit 3)

“Ich bin Compiler, Compiler.” (P6, unit 3)

“Weil ich bin ja der Roboter.” (P2, unit 3)

From Are there di↵erences in debugging between
di↵erent age groups?

“Ab dann. Aber dann prallt er ja gegen die Mauer.” (P2, unit 2)

“Ähm links. Geradeaus, geradeaus. Hä, hier lang.” (P7, unit 2)

“Wir sollen das so fünf Mal machen.” (P2, unit 2)

“Warte tei-, lassen wir es einfach. (fehler wird einfach so gelassen)” (P3, unit 3)

“Wieso macht das der Ball?” (P3, unit 3)

“Warte vielleicht erst mal. Das hier kommt jetzt erst mal weg.” (P2, unit 3)

“(ausatmen) Wir haben was falsch gemacht. Jetzt kommen wir hier nicht mehr
weiter.” (P5, unit 4)

“Oh, wir haben nur eins nach vorne vergessen.” (P13, unit 2)

“Guck mal, ...wes(?) überspringst dann, ein, zwei, dann drehst du dich nach da?!”
(P17, unit 2)

“Hä? Die muss sich doch zwölf Mal drehen.” (P8, unit 3)

“Und dann sagt es gleich danach, da ist er ja, obwohl der Frosch was sagt davor.”
(P13, unit 3)

“Das is, das is komisch. Der nimmt jetzt nicht das von den anderen. Das fängt ja
bei der... Warte, die Eidechse schrumpft erst mal.” (P13, unit 4)

“Aber wie kann man denn den Ball zaubern? (sich fragen ob es diesen Befehl gibt)”
(P7, unit 3)

“Geht hier irgendwo zaubern?” (P1, unit 3)

“Wo ist das Programm Küssen?” (P3, unit 3)

“Ähm, wie kann man machen, dass der Drache Feuer speit?” (P6, unit 4)

“An die Ecke. Und wir wollen jetzt dastellen, dass das Abends ist? Die Höhle muss
ja eigentlich aufs erste Bild. Das klappt nicht. Das klappt nicht.” (P9, unit 4)

“Ja den können wir als Meister nehmen.” (P14, unit 4)

“(einatmen, aufgeregt) Ja stopp! Wir müssen einfach einmal ein Mensch.. und dann
was draufmalen, wir müssen den doch gar nicht selber zeichnen! Wir müssen einfach
was dran malen wie dummies. Oh Mann.” (P14, unit 4)

“(liest) “Und wartete, bis Putin ihn entdeckte. Putin entdeckte ihn nicht.” Ähm und
machen wir einfach mal so (unhörbar)” (P18, unit 4)

96

E. Original Quotes

“Also, er konnte sich groß, klein, groß, klein, groß, klein. (verstellte Stimme) Jaja-
jajaja.” (P14, unit 4)

“Ja das müssen die dann so richtig dumm malen.” (P14, unit 4)

“Nein, unsichtbar ist er nicht, der versteckt sich. Aber auf dem Bildschirm, sieht das
aus als...” (P16, unit 4)

“Nein die gibt es vielleicht gar nicht! Wir wissen es... unter dem Meer.” (P15, unit
4)

“Das muss den auch da drinnen geben. Den..” (P18, unit 4)

“Die wissen nicht wer das ist. Wir müssen jetzt ohne ihn machen, komm. Entweder
wir hätten ihn am Anfang mit dazu getan oder jetzt nicht.” (P18, unit 4)

“Die brauchen ganz viele Bilder, verschiedene Hintergründe.” (P13, unit 4)

From Further Exploration

“Hier Jungs. Äh ich bin Compiler.” (P6, unit 2)

“Ich möchte wieder Compiler sein.” (P1, unit 2)

“Ich sage an.” (P11, unit 2)

“Los, damit ich es legen kann.” (P6, unit 2)

“Ja aber ich bin der Programmierer.” (P17, unit 2)

“Soo, ich steuer wieder den Roboter... Und du sagst wieder mal an.” (P15, unit 2)

“Hn eigentlich bist du nur Compiler und Aufbauer.” (P3, unit 2)

“Deswegen muss ich ja alles aufmalen. Yuhuuu!” (P4, unit 2)

“Hey P4, ich darf das machen! (malen)” (P5, unit 2)

“Als Roboter musst du das selbe machen eigentlich wie [P5].” (P3, unit 2)

“Hallo? (P17, unit 2)

“(unterbricht) Versteht man sich selber?”(P15, unit 2)

“Nana. Nana. (P9, unit 2)

“Hallo, dummes Mikrofon. Wir können auch noch mal was Witziges machen.” (P3,
unit 3)

“Hörst du mich, du, du kleines Diiiiiiiiiingsbuuuuuums? (Mikro) Hallo? Hörst du
mich? Hallo. Buh.” (P6, unit 3)

“Hallo! Hallo! Hallo! Hallo! Hallo, Hallo Hallo, Hallo.” (P15, unit 3)

“Nein wirklich. Hallo. Programmieren macht sehr viel Spaß. Andorn(?).” (P15, unit
3)

“Die setzen jetzt erst die Krone auf da drüben.” (P6, unit 2)

“Die sind beim selben wie wir gerade.” (P4, unit 2)

“Ich geh mal gucken was die machen.” (P17, unit 2)

“Ey die haben auch Tunnel.” (P6, unit 2)

“So fertig! Wir haben gewonnen.” (P3, unit 2)

97

“Dieses Programm haben wir schon gemacht.” (P15, unit 2)

“Komm mal wir demonstrieren unserer Stärke.” (P1, unit 3)

“Wir machen jetzt unsere Stärke, los wir zeigen es den.” (P1, unit 3)

“Unser Programm ist das Beste.” (P18, unit 3)

“Wo sind die? [...] Na die andern?” (P16, unit 3)

“Hinten Rückwärtsgang einlegen. Guck mal die andere Gruppe, ob die es richtig
macht.” (P3, unit 4)

“’Hallo.’” (P4, unit 3)

“’Hallo.’” (P11, unit 3)

“’Hallo.’” (P12, unit 3)

“’Hü ein Apfel.’” (P8, unit 3)

“Also, ’hü ein Apfel’ sagt das Pferd. ’Hier ein Apfel’ sagt die (unhörbar). Wie sieht
euers aus?” P8, unit 3)

“’Autsch.’” (P3, unit 4)

“’Abracadabra.’” (P1, unit 4)

“’Oh nein!’ Hehe.”(P1, unit 4)

98

